Objective: The goal of this study was to examine the relationship between lap belt tension and force measured at the iliac wing and the effects of model type and torso posture on this relationship. From this analysis, preliminary transfer functions were developed to predict loads applied to the iliac wing as a function of lap belt tension at magnitudes typically measured in sled and vehicle crash tests.

Methods: A DOE study was conducted to provide a robust assessment of the lap belt-pelvis load relationship under various conditions. The GHBMC, THUMS, and THOR FE models were positioned in upright and reclined postures with several other intrinsic and extrinsic parameters varied for a total of 360 simulations. For the HBMs, instrumentation was developed to measure ASIS load at each iliac wing. Simulations that resulted in submarining were identified and removed from the subsequent development of lap belt-ASIS force transfer functions.

Results: The GHBMC exhibited submarining more frequently than the THUMS and THOR models. In addition to submarining, there were several cases in which the lap belt remained below the ASIS instrumentation or roped during the model's forward excursion. These phenomena, particularly prevalent in the THUMS model, also influenced how the lap belt engaged the ASIS instrumentation and were thus eliminated from the transfer function development. Transfer functions relating peak lap belt tension and corresponding ASIS force magnitudes were developed for the GHBMC and THOR models in upright and reclined postures. In the upright posture, the THOR showed a higher level of ASIS load measured for a given level of lap belt tension than the GHBMC; however, in recline the lap belt-pelvis load relationship was similar between the two models.

Conclusions: The lap belt-pelvis load relationship was found to be affected by model type, posture, the area in which the ASIS instrumentation was defined, and occupant kinematics. This study showed it was possible to minimize the ASIS force by having the lap belt engage low on the pelvis and upper thighs, though further study is needed to determine if this loading mechanism is truly protective from an injury standpoint or an artifact of bypassing the ASIS instrumentation. The transfer function that showed the highest ASIS force measured for a given level of lap belt tension is recommended for future use.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389588.2024.2381084DOI Listing

Publication Analysis

Top Keywords

lap belt
32
belt tension
20
lap belt-pelvis
16
belt-pelvis load
16
asis instrumentation
16
lap
12
iliac wing
12
load relationship
12
thor models
12
asis force
12

Similar Publications

Article Synopsis
  • The study investigates injury risk differences between females and males in vehicle crashes by examining how well male data can be scaled to predict female responses during frontal impact sled tests.
  • It utilized sled test data from four mid-size males and three mid-size females in a reclined position, applying various scaling methods to analyze how different physical dimensions influence response predictions.
  • Results showed that while scaling improved prediction accuracy for certain measures, it also indicated that physical differences alone may not fully account for the variations in responses between males and females, with torso volume being the most effective predictor.
View Article and Find Full Text PDF

Objective: The effect of shoulder-belt load-limiting was evaluated on right-front passenger kinematics in 90 km/h oblique OMDB (offset moving deformable barrier) impacts and compared to kinematics in 56 km/h NCAP crash tests. The study focused on the influence of webbing pulling out of the retractor increasing forward excursion of the upper torso and head.

Methods: 18 OMDB crash tests were conducted by NHTSA at 90 km/h.

View Article and Find Full Text PDF

Rear passenger restraint in frontal NCAP tests compared to the right-front passenger.

Traffic Inj Prev

November 2024

ProBiomechanics LLC, Bloomfield Hills, Michigan.

Objective: This study compared kinematic and biomechanic responses of the 5 female Hybrid III in the right-rear and right-front passenger seats in frontal NCAP tests with 2015-16 MY vehicles. It focused on the lap-shoulder belt restraint of the rear passenger.

Methods: Eleven frontal NCAP tests were conducted by NHTSA at 56 km/h with a lap-shoulder belted 5 Hybrid III dummy in the right-rear and right-front seats.

View Article and Find Full Text PDF

Objective: In frontal crashes belt-positioning boosters (BPB) may prevent submarining when the seatback is reclined. It is unclear if the BPB can also mitigate injuries in far-side lateral-oblique crashes in reclined conditions, where current restraints are less effective in reducing lateral excursion. This study aimed to understand reclined child injury risk during lateral-oblique impacts, with and without a booster seat, by using the Large Omni-Directional Child (LODC) test device.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the risk of submarining (lap belt slipping off the pelvis) in car crashes, which could increase in future autonomous vehicles due to adjustable seating positions; it emphasizes the need for better safety design tools that accurately assess this risk.* -
  • Researchers conducted a parameter study to analyze the impact of different factors (like belt and seat friction, seat stiffness, and belt bending stiffness) on pelvis response and the likelihood of submarining during crash simulations.* -
  • The findings revealed that belt and seat friction significantly affect pelvis movement and submarining outcomes, suggesting future research should focus on real-world factors like seat friction coefficients and improve belt modeling to enhance safety predictions.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!