Apple leaf diseases can seriously affect apple production and quality, and accurately detecting them can improve the efficiency of disease monitoring. Owing to the complex natural growth environment, apple leaf lesions may be easily confused with background noise, leading to poor performance. In this study, a cascaded Incremental Region Proposal Network (Inc-RPN) is proposed to accurately detect apple leaf diseases in natural environments. The proposed Inc-RPN has a two-layer RPN architecture, where the precursor RPN is leveraged to generate diseased leaf proposals, and the successor RPN focuses on extracting target disease spots based on diseased leaf proposals. In the successor RPN, a low-level feature aggregation module is designed to fully utilize the bridged features and preserve the semantic information of the target disease spots. An incremental module is also leveraged to extract aggregated diseased leaf features and target disease spot features. Finally, a novel position anchor generator is designed to generate anchors based on diseased leaf proposals. The experimental results show that the proposed Inc-RPN performs very well on the FALD_CED and Apple Leaf Disease datasets, showing that it can accurately perform apple leaf disease detection tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2024.3469178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!