A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Akt-activated GSK3β inhibitory peptide effectively blocks tau hyperphosphorylation. | LitMetric

Akt-activated GSK3β inhibitory peptide effectively blocks tau hyperphosphorylation.

Arch Pharm Res

Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.

Published: November 2024

AI Article Synopsis

  • Tau hyperphosphorylation and accumulation in neurofibrillary tangles are linked to cognitive decline in Alzheimer's disease, with GSK3β overexpression playing a key role.
  • A new GSK3β inhibitory peptide (GIP) was developed, combining motifs from LRP6 and a sequence targeting Akt, effectively blocking tau phosphorylation and reducing cell death.
  • In vivo tests on a mouse model showed that GIP reduced tau phosphorylation in the hippocampus, improved memory, and did not affect Aβ plaque levels or neuroinflammation, suggesting a new approach for treating Alzheimer's.

Article Abstract

Tau hyperphosphorylation and accumulation in neurofibrillary tangles are closely associated with cognitive deficits in Alzheimer's disease (AD). Glycogen synthase kinase 3β (GSK3β) overexpression has been implicated in tau hyperphosphorylation, and many GSK3β inhibitors have been developed as potential therapeutic candidates for AD. However, the potent GSK3β inhibitors produced are prone to side effects because they can interfere with the basic functions of GSK3β. We previously found that when the phosphorylated PPPSPxS motifs in Wnt coreceptor LRP6 can directly inhibit GSK3β, and thus, we produced a novel GSK3β inhibitory peptide (GIP), specifically activated by Akt, by combining the PPPSPxS motif of LRP6 and the Akt targeted sequence (RxRxxS) of GSK3β. GIP effectively blocked GSK3β-induced tau phosphorylation in hippocampal homogenates and, when fused with a cell-permeable sequence, attenuated Aβ-induced tau phosphorylation in human neuroblastoma cells and inhibited cell death. An in vivo study using a 3 × Tg-AD mouse model revealed that intravenous GIP significantly reduced tau phosphorylation in the hippocampus without affecting Aβ plaque levels or neuroinflammation and ameliorated memory defects. The study provides a novel neuroprotective drug development strategy targeting tau hyperphosphorylation in AD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-024-01513-1DOI Listing

Publication Analysis

Top Keywords

tau hyperphosphorylation
16
tau phosphorylation
12
gsk3β inhibitory
8
inhibitory peptide
8
gsk3β inhibitors
8
tau
7
gsk3β
7
akt-activated gsk3β
4
peptide effectively
4
effectively blocks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!