Regulation the electronic density of solid-state electrolyte by donor-acceptor (D-A) system can achieve highly-selective Li transportation and conduction in solid-state Li metal batteries. This study reports a high-performance solid-state electrolyte thorough D-A-linked covalent organic frameworks (COFs) based on intramolecular charge transfer interactions. Unlike other reported COF-based solid-state electrolyte, the developed concept with D-A-linked COFs not only achieves electronic modulation to promote highly-selective Li migration and inhibit Li dendrite, but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries. The introduced strong electronegativity F-based ligand in COF electrolyte results in highly-selective Li (transference number 0.83), high ionic conductivity (6.7 × 10 S cm), excellent cyclic ability (1000 h) in Li metal symmetric cell and high-capacity retention in Li/LiFePO cell (90.8% for 300 cycles at 5C) than substituted C- and N-based ligands. This is ascribed to outstanding D-A interaction between donor porphyrin and acceptor F atoms, which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li kinetics. Consequently, we anticipate that this work creates insight into the strategy for accelerating Li conduction in high-performance solid-state Li metal batteries through D-A system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427627 | PMC |
http://dx.doi.org/10.1007/s40820-024-01509-y | DOI Listing |
Phys Chem Chem Phys
January 2025
School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China.
The practical applications of all-solid-state batteries (ASSBs) are hindered by poor Li kinetics in electrodes due to the inadequate contact between the cathode active materials (CAMs) and solid-state electrolytes (SSEs). Therefore, improving the contact interface between CAMs and SSEs is necessary to improve the cathodic Li kinetics by increasing the lithium-ion transport sites. To address this issue, sub-micrometer LiPSCl (SU-LPSC) particles of high specific areas were utilized to fabricate cathodes with high mass loading.
View Article and Find Full Text PDFChemistry
January 2025
Sichuan University, School of Chemical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China, 610065, Chendu, CHINA.
Li1.3Al0.3Ti1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fuzhou University College of Chemical Engineering, College of Chemical Engineering, CHINA.
Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.
View Article and Find Full Text PDFSmall
January 2025
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Center of Energy Storage Materials and Technology, Nanjing University, Nanjing, 210093, China.
Large-scale energy storage devices experience explosive development in response to the increasing energy crisis. Zinc ion batteries featuring low cost, high safe, and environment friendly are considered promising candidates for next-generation energy storage devices. However, their practical application suffers from the limited anode lifespan under a high zinc utilization ratio, which can be attributed to aggravated Zn loss caused by zinc conversion reactions and "dead" Zn.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics, Tsinghua University, Beijing, 100084, China.
Lithium dendrite penetration through solid electrolyte has been the major obstacle for practical sulfide-based all-solid-state lithium metal batteries (ASSLMBs). Herein, a series of tailored model solid cells are designed to investigate the intrinsic lithium growth behavior at open surfaces and internal cracks of sulfide solid electrolyte. It is shown that when plating lithium on the open surface of electrolyte (free space), the lithium exhibits an intrinsic columnar growth behavior perpendicular to the electrolyte surface, preferentially along the (110) crystal axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!