Prussian Blue Analogue-Templated Nanocomposites for Alkali-Ion Batteries: Progress and Perspective.

Nanomicro Lett

School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.

Published: September 2024

Lithium-ion batteries (LIBs) have dominated the portable electronic and electrochemical energy markets since their commercialisation, whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries (AIBs) including sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Owing to larger ion sizes of Na and K compared with Li, nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage. With enticing open rigid framework structures, Prussian blue analogues (PBAs) remain promising self-sacrificial templates for the preparation of various nanocomposites, whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition. This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication, lithium/sodium/potassium storage mechanism, and applications in AIBs (LIBs, SIBs, and PIBs). To distinguish various PBA derivatives, the working mechanism and applications of PBA-templated metal oxides, metal chalcogenides, metal phosphides, and other nanocomposites are systematically evaluated, facilitating the establishment of a structure-activity correlation for these materials. Based on the fruitful achievements of PBA-derived nanocomposites, perspectives for their future development are envisioned, aiming to narrow down the gap between laboratory study and industrial reality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427656PMC
http://dx.doi.org/10.1007/s40820-024-01517-yDOI Listing

Publication Analysis

Top Keywords

prussian blue
8
alkali-ion batteries
8
lithium/sodium/potassium storage
8
pba-derived nanocomposites
8
mechanism applications
8
nanocomposites
6
batteries
5
blue analogue-templated
4
analogue-templated nanocomposites
4
nanocomposites alkali-ion
4

Similar Publications

Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)] ions.

View Article and Find Full Text PDF

Zero-Waste Polyanion and Prussian Blue Composites toward Practical Sodium-Ion Batteries.

Adv Mater

January 2025

Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China.

Closed-loop transformation of raw materials into high-value-added products is highly desired for the sustainable development of the society but is seldom achieved. Here, a low-cost, solvent-free and "zero-waste" mechanochemical protocol is reported for the large-scale preparation of cathode materials for sodium-ion batteries (SIBs). This process ensures full utilization of raw materials, effectively reduces water consumption, and simplifies the operating process.

View Article and Find Full Text PDF

Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture.

View Article and Find Full Text PDF

A novel electrochemiluminescence sensor based on NiCo NCs@CN QDs nanocomposites with poly-L-cysteine as co-reaction accelerator for ultrasensitive detection of vitamin K.

Food Chem

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China; Research Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, No.403 Nanchang Road, Urumqi, Xinjiang 830091, PR China. Electronic address:

Article Synopsis
  • A new eco-friendly electrochemiluminescence (ECL) sensor using carbon quantum dots (CN QDs) was developed for highly sensitive detection of vitamin K (VK).
  • The sensor combined nickel-cobalt nanocages (NiCo NCs) with CN QDs, enhancing luminescent properties and allowing for efficient signal amplification when applied to a poly-L-cysteine film.
  • It demonstrated a detection range for VK between 1.0 × 10⁻⁸ to 5.0 × 10⁻⁴ mol/L, with a low limit of detection at 1.65 × 10⁻⁹ mol/L, and showed effective recoveries in food samples, indicating its practical application.
View Article and Find Full Text PDF

Modification of Cells with Metal Hexacyanoferrates for the Construction of a Yeast-Based Fuel Cell.

Molecules

January 2025

Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.

This research presents a simple procedure for chemically modifying yeast () cells with nickel hexacyanoferrate (NiHCF) and ferric hexacyanoferrate, also known as Prussian blue (PB), to increase the conductivity of the yeast cell wall. Using linear sweep voltammetry, NiHCF-modified yeast and PB-modified yeast (NiHCF/yeast and PB/yeast, respectively) were found to have better cell wall conductivity in [Fe(CN)] and glucose-containing phosphate-buffered solution than unmodified yeast. Spectrophotometric analysis showed that the modification of yeast cells with NiHCF had a less harmful effect on yeast cell viability than the modification of yeast cells with PB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!