In this study, we have developed an effective and general strategy for synthesizing various 4-[(trifluoromethyl)thio]-2,3-dihydrofuran derivatives with high regioselectivity from easily prepared cyclopropyl ketone under mild reaction conditions. By the combination of photoredox, copper, and Lewis acid catalysis into a triple catalytic system, this methodology facilitates the selective cleavage of the carbon-carbon bonds and the formation of new carbon-oxygen and carbon-sulfur bonds. In addition, to enhance the synthetic feasibility of this protocol, we demonstrate its broad applicability across a wide range of substrates and its scalability for large-scale synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.4c02959 | DOI Listing |
Int J Biol Macromol
December 2024
Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:
Angew Chem Int Ed Engl
December 2024
Tianjin University, School of Materials Science and Engineering, Bldg 31, Tianjin, CHINA.
Single-atom catalysts (SACs) with nonplanar configurations possess unique capabilities for tailoring the oxygen reduction reaction (ORR) catalytic performance compared with the ones with planar configurations, owing to the additional orbital rearrangement arising from the asymmetric coordination atoms. However, the systematic investigation of these nonplanar SACs has long been hindered by the difficulty in screening feasible nonplanar configurations and precisely controlling the coordination structures. Herein, we demonstrate a combined high-throughput screening and experimental verification of nonplanar SACs (ppy-MN3) for highly active and selective 2e- ORR electrocatalysis.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
The exploration of main group compounds with multiple bonds has significantly enhanced our understanding of chemical bonding and expanded transition-metal-free bond activation and catalysis. Diborynes, characterized by a boron-boron triple bond (B≡B), represent a particularly challenging area due to boron's limited valence electrons. Here, we report the synthesis and characterization of a silylene-stabilized diboryne (), expanding the frontier of diboryne stabilization.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA.
Photocatalytic nitrogen (N2) fixation over semiconductors has always suffered from poor conversion efficiency owing to weak N2 adsorption and the difficulty of N≡N triple bond dissociation. Herein, a Co single-atom catalyst (SAC) model with a C-defect-evoked CoP4 distorted configuration was fabricated using a selective phosphidation strategy, wherein P-doping and C defects co-regulate the local electronic structure of Co sites. Comprehensive experiments and theoretical calculations revealed that the distorted CoP4 configuration caused a strong charge redistribution between the Co atoms and adjacent C atoms, minimizing their electronegativity difference.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Zhongshan Road 457., 116023, Dalian, CHINA.
The photocatalytic oxidation of water with gaseous oxygen is environmentally benign for the synthesis of hydrogen peroxide (H2O2), but it is currently constrained by the inadequate supply of gaseous oxygen at the catalyst surface in a solid-liquid-gas triple-phase reaction system. Herein, we address this challenge by employing the zeolite encapsulated catalysts that efficiently enrich gaseous oxygen and accelerate the H2O2 synthesis in in aqueous conditions. We focus on the classical titania photocatalyst, encapsulating it within siliceous MFI zeolite crystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!