In articular cartilage, the pericellular matrix acting as a specialized mechanical microenvironment modulates environmental signals to chondrocytes through mechanotransduction. Matrix viscoelastic alterations during cartilage development and osteoarthritis (OA) degeneration play an important role in regulating chondrocyte fate and cartilage matrix homeostasis. In recent years, scientists are gradually realizing the importance of matrix viscoelasticity in regulating chondrocyte function and phenotype. Notably, this is an emerging field, and this review summarizes the existing literatures to the best of our knowledge. This review provides an overview of the viscoelastic properties of hydrogels and the role of matrix viscoelasticity in directing chondrocyte behavior. In this review, we elaborated the mechanotransuction mechanisms by which cells sense and respond to the viscoelastic environment and also discussed the underlying signaling pathways. Moreover, emerging insights into the role of matrix viscoelasticity in regulating chondrocyte function and cartilage formation shed light into designing cell-instructive biomaterial. We also describe the potential use of viscoelastic biomaterials in cartilage tissue engineering and regenerative medicine. Future perspectives on mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses, and biomaterial design are highlighted. Finally, this review also highlights recent strategies utilizing viscoelastic hydrogels for designing cartilage-on-a-chip.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbf.4126DOI Listing

Publication Analysis

Top Keywords

matrix viscoelasticity
16
regulating chondrocyte
12
viscoelasticity regulating
8
chondrocyte function
8
role matrix
8
matrix
7
viscoelastic
6
cartilage
5
viscoelasticity tunes
4
tunes mechanobiological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!