Understanding fast pedestal dynamics and turbulent transport in the edge and scrape-off layer (SOL) plasma of spherical tokamaks is crucial for the design and operation of future fusion reactors. The alkali beam emission spectroscopy diagnostic technique offers a means to measure the absolute electron density radial profile and fluctuation amplitude in these regions. In this study, we demonstrate that injecting a sodium neutral beam radially into the plasma and analyzing the light emission from its 3p-3s atomic transition using near-orthogonal viewing angles allows for accurate measurement of the electron density profile and fluctuations in the National Spherical Torus Experiment (NSTX) Upgrade spherical tokamak. Our findings indicate a peak signal-to-noise ratio of 118 in the pedestal and 12 in the SOL under typical NSTX plasma conditions. The spatial resolution for the electron density profile is estimated to be between 2 and 8 mm, while for fluctuation measurements, it ranges from 12 to 15 mm.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0218248DOI Listing

Publication Analysis

Top Keywords

electron density
12
alkali beam
8
beam emission
8
emission spectroscopy
8
density profile
8
applicability alkali
4
spectroscopy nstx-u
4
nstx-u understanding
4
understanding fast
4
fast pedestal
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.

View Article and Find Full Text PDF

The inductive effect is a central concept in chemistry and is often exemplified by the p values of acetic acid derivatives. The reduction in p is canonically attributed to the reduction in the electron density of the carboxylate group through the inductive effect. However, wave functional theory calculations presented herein reveal that the charge density of the carboxylate group is not explained by the inductive effect.

View Article and Find Full Text PDF

The integration of flexible electronics and photonics has the potential to create revolutionary technologies, yet it has been challenging to marry electronic and photonic components on a single polymer device, especially through high-volume manufacturing. Here, we present a robust, chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where several post-fabricated, ultrathin, polymer electronic, and optoelectronic chiplets are vertically bonded into one single chip at room temperature and then shaped into application-specific form factors with monolithic Input/Output (I/O). As a demonstration, we applied this process and developed a flexible 3D-integrated optrode with high-density arrays of microelectrodes for electrical recording and micro light-emitting diodes (μLEDs) for optogenetic stimulation while with unprecedented integration of additional temperature sensors for bio-safe operations and shielding designs for optoelectronic artifact prevention.

View Article and Find Full Text PDF

CO- and HS-adsorbed one-dimensional AlSi structures for gas sensing applications.

R Soc Open Sci

January 2025

Institute of Southeast Vietnamese Studies, Thu Dau Mot University, Thu Dau Mot, Binh Duong, Vietnam.

The potential applications of low-dimensional materials continue to inspire significant interest among researchers worldwide. This study investigates the properties of one-dimensional AlSi monolayers, specifically AlSi nanoribbons, and their adsorption behaviour with CO and HS molecules. The electronic, magnetic and optical properties of these systems are calculated using density functional theory and the Vienna Ab initio Simulation Package.

View Article and Find Full Text PDF

Large bone defects are still a persistent challenge in orthopedics. The availability limitations and associated complications of autologous and allogeneic bone have prompted an increasing reliance on tissue engineering and regenerative medicine. In this study, we developed an injectable scaffold combining an acellular extracellular periosteal matrix hydrogel with poly(d,l-lactate--glycol-acetate) microspheres loaded with the E7 peptide and miR217 (miR217/E7@MP-GEL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!