A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two-Pronged Attack: Dual Activation of Fat Reduction Using Near-Infrared-Responsive Nanosandwich for Targeted Anti-Obesity Treatment. | LitMetric

Excessive fat accumulation and chronic inflammation are two typical characteristics of obesity. AMP-activated protein kinase (AMPK), a master regulator of energy metabolism, is involved in adipogenesis, lipogenesis, and inflammation modulation in adipose tissue (AT). Thus, effective lipid reduction and anti-inflammation through AMPK regulation play vital roles in treating obesity. Herein, an anti-obesity nanosandwich is fabricated through attaching polymetformin (PolyMet) onto photothermal agent black phosphorus nanosheets (BP). PolyMet activates AMPK to inhibit adipogenesis, promote browning, and mitigate AT inflammation by decreasing macrophage infiltration, repolarizing macrophage phenotype, and downregulating pro-inflammatory cytokines. Additionally, BP induces lipolysis and apoptosis of adipocytes and macrophages through a photothermal effect. By further functionalization using hyaluronic acid (HA) and MMP2 substrate-linking P3 peptide-modified HA (P3-HA), an enhanced anti-obesity effect is obtained by dual-targeting of P3 and HA, and HA-mediated CD44 poly-clustering after MMP2 cleavage. Upon laser irradiation, the designed nanosandwich (P3-HA/PM@BP) effectively inhibits obesity development in obese mice, increases M2/M1 ratio in AT, reduces the serum levels of cholesterol/triglyceride and improves insulin sensitivity, exhibiting promising research potential to facilitate the clinical development of modern anti-obesity therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578330PMC
http://dx.doi.org/10.1002/advs.202406985DOI Listing

Publication Analysis

Top Keywords

two-pronged attack
4
attack dual
4
dual activation
4
activation fat
4
fat reduction
4
reduction near-infrared-responsive
4
near-infrared-responsive nanosandwich
4
nanosandwich targeted
4
anti-obesity
4
targeted anti-obesity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!