Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The multifactorial influence of repetitive transcranial magnetic stimulation (rTMS) on neuroplasticity in neural networks is associated with improvements in cognitive dysfunction and sleep disorders. The mechanisms of rTMS and the transcriptional-neuronal correlation in Alzheimer's disease (AD) patients with sleep disorders have not been fully elucidated.
Methods: Forty-six elderly participants with cognitive impairment (23 patients with low sleep quality and 23 patients with high sleep quality) underwent 4-week periods of neuronavigated rTMS of the angular gyrus and neuroimaging tests, and gene expression data for six post mortem brains were collected from another database. Transcription-neuroimaging association analysis was used to evaluate the effects on cognitive dysfunction and the underlying biological mechanisms involved.
Results: Distinct variable neuroplasticity in the anterior and posterior angular gyrus networks was detected in the low sleep quality group. These interactions were associated with multiple gene pathways, and the comprehensive effects were associated with improvements in episodic memory.
Discussion: Multitrajectory neuroplasticity is associated with complex biological mechanisms in AD-spectrum patients with sleep disorders.
Highlights: This was the first transcription-neuroimaging study to demonstrate that multitrajectory neuroplasticity in neural circuits was induced via neuronavigated rTMS, which was associated with complex gene expression in AD-spectrum patients with sleep disorders. The interactions between sleep quality and neuronavigated rTMS were coupled with multiple gene pathways and improvements in episodic memory. The present strategy for integrating neuroimaging, rTMS intervention, and genetic data provide a new approach to comprehending the biological mechanisms involved in AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567849 | PMC |
http://dx.doi.org/10.1002/alz.14255 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!