An improved global potential energy surface (PES) for the electronic ground state of the HeLiH+ system is reported. The data points are calculated at the full configuration-interaction level of theory and extrapolated to the complete basis set limit. The fitting procedure implements a combination of neural network and Aguado-Paniagua functional forms to fit the ab initio data points. The fitted surface reproduces the ab initio data points accurately in short as well as long ranges and has an overall root mean square error of 1.76 × 10-3 eV (14.21 cm-1) in energy space <10 and 9.28 × 10-4 eV (7.48 cm-1) upto 2 eV. The optimized global minimum is also accurately reproduced using the fitted surface. To establish the accuracy of the new PES, dynamics investigation of the He + LiH+(v = 0, j = 0) → LiHe+ + H reaction is performed using the Coriolis coupled quantum mechanical and quasi-classical trajectory methods. The results, such as integral cross sections and rate constants, show the effect of the opening of the collision-induced dissociation (CID) channel at low collision energy and are significantly different from the earlier study of Tacconi et al. [Phys. Chem. Chem. Phys. 14, 637-645 (2012)]. These discrepancies appear to be a result of the treatment of the CID channel in the dynamics calculations, which is excluded from the reactive channel in the current work.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0230496DOI Listing

Publication Analysis

Top Keywords

data points
12
potential energy
8
energy surface
8
ab initio data
8
ground electronic
4
electronic state
4
state potential
4
surface helih+
4
helih+ analytical
4
analytical representation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!