The study of fetal gut development is critical due to its substantial influence on immediate neonatal and long-term adult health. Current research largely focuses on microbiome colonization, gut immunity, and barrier function, alongside the impact of external factors on these phenomena. Limited research has been dedicated to the categorization of developing fetal gut cells. Our study aimed to enhance our understanding of fetal gut development by employing advanced machine-learning techniques on single-cell sequencing data. This dataset consisted of 62,849 samples, each characterized by 33,694 distinct gene features. Four feature ranking algorithms were utilized to sort features according to their significance, resulting in four feature lists. Then, these lists were fed into an incremental feature selection method to extract essential genes, classification rules, and build efficient classifiers. Several important genes were recognized by multiple feature ranking algorithms, such as FGG, MDK, RBP1, RBP2, IGFBP7, and SPON2. These features were key in differentiating specific developing intestinal cells, including epithelial, immune, mesenchymal, and vasculature cells of the colon, duo jejunum, and ileum cells. The classification rules showed special gene expression patterns on some intestinal cell types and the efficient classifiers can be useful tools for identifying intestinal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.202400104DOI Listing

Publication Analysis

Top Keywords

fetal gut
16
gut development
12
feature ranking
8
ranking algorithms
8
classification rules
8
efficient classifiers
8
intestinal cells
8
gut
5
cells
5
identification key
4

Similar Publications

A rare case of adult intestinal malrotation: A case report.

Int J Surg Case Rep

January 2025

Department of Infection Prevention and Patient Safety, Eka Kotebe General Hospital, Addis Ababa, Ethiopia.

Introduction And Importance: Intestinal malrotation is a congenital disorder resulting from the failure of the normal embryologic fetal sequence of bowel rotation and fixation. Adult midgut malrotation is extremely uncommon, with incidence estimates ranging from 0.0001 % to 0.

View Article and Find Full Text PDF

The nutritional environment during fetal and early postnatal life has a long-term impact on growth, development, and metabolic health of the offspring, a process termed "nutritional programming." Rodent models studying programming effects of nutritional interventions use either purified or grain-based rodent diets as background diets. However, the impact of these diets on phenotypic outcomes in these models has not been comprehensively investigated.

View Article and Find Full Text PDF

Introduction: Gastric adenocarcinoma with enteroblastic differentiation (GAED) is a rare entity with worse prognosis compared to conventional gastric adenocarcinomas. Its histological characteristics are fetal gut-like architecture and tumor cells with cytoplasmic clearing, as well as positive immunohistochemical reaction to at least one of the enteroblastic markers. Hereby, we present a case of GAED with neuroendocrine marker positivity, with whole exome sequencing (WES), and an updated literature review.

View Article and Find Full Text PDF

The complex relationship between kidney disease and hypertension represents a critical area of research, yet less attention has been devoted to exploring how this connection develops early in life. Various environmental factors during pregnancy and lactation can significantly impact kidney development, potentially leading to kidney programming that results in alterations in both structure and function. This early programming can contribute to adverse long-term kidney outcomes, such as hypertension.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!