Synthetic molecular sensors are crucial for real-time monitoring in biological systems and biotechnological applications, where detecting targets amidst potential interferents is essential. This task is particularly challenging in competitive environments that lacking chemically reactive functional groups, common in agricultural, biological, and environmental contexts. Consequently, scientific efforts have focused on developing sensitive and rapid analytical techniques, with fluorescent sensors emerging as prominent tools. Among these, the albumin-based supramolecular fluorescent indicator displacement assay (AS-FIDA) represents a significant advancement. Our research group has extensively contributed to this field, demonstrating the practical utility of various AS-FIDAs. We pioneered the use of albumin (ALB) as a host molecule in these synthetic chemical sensors, marking a notable advancement. AS-FIDA employs ALB as a versatile host molecule with multiple flexible and asymmetrical binding pockets capable of forming complexes with guest dyes, resulting in ALB@dye ensembles tailored for specific analyte recognition. Recent advancements in AS-FIDA have significantly expanded its applications. This review explores recent advances in ALB-based supramolecular sensors and sensor arrays for detecting biologically and environmentally significant molecules, such as pesticides, hormones, biomarkers, reactive species, mycotoxins, drugs, and carcinogens. The versatility of AS-FIDA positions it as a valuable tool in diverse settings, from laboratory research to practical applications in portable devices, smartphone-assisted on-site monitoring, imaging of living cells, and real sample analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc03711a | DOI Listing |
Sci Rep
December 2024
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
The cytokine homologs, particularly transforming growth factor (TGF)-β, is a crucial immunomodulatory molecule and involved in growth and developmental processes in several helminths. In this study, the basic properties and functions of T. spiralis TGF-β homolog 2 (TsTGH2) were characterized using bioinformatics and molecular biology approaches.
View Article and Find Full Text PDFSci Rep
December 2024
Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA.
The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).
View Article and Find Full Text PDFJ Mol Graph Model
December 2024
Post Graduate Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, 160036, India.
A large population in the world lives in tropical and subtropical regions, showing a high risk of Zika viral infection which leads to a situation of global health emergency and demands extensive research to create effective antiviral medicines. Herein, we introduce the design of a new derivatized trans-stilbene molecule to investigate the inhibition of Zika virus entry into the host cell by molecular docking approach. The synthesized compound has been characterized by different analytical techniques such as FTIR, H NMR,C NMR and UV-visible spectroscopy as well as Mass spectrometry (MS).
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.
View Article and Find Full Text PDFNPJ Regen Med
December 2024
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!