Apical Membrane Antigen 1 (AMA1) plays a vital role in the invasion of the host erythrocyte by the malaria parasite, . It is thus an important target for vaccine and anti-malaria therapeutic strategies that block the invasion process. AMA1, present on the surface of the parasite, interacts with RON2, a component of the parasite's rhoptry neck (RON) protein complex, which is transferred to the erythrocyte membrane during invasion. The D2 loop of AMA1 plays an essential role in invasion as it partially covers the RON2-binding site and must therefore be displaced for invasion to proceed. Several structural studies have shown that the D2 loop is very mobile, a property that is probably important for the function of AMA1. Here we present three crystal structures of AMA1 from (strains 3D7 and FVO) and (strain Sal1), in which the D2 loop could be largely traced in the electron density maps. The D2 loop of PfAMA1-FVO and PvAMA1 (as a complex with a monoclonal antibody Fab) has a conformation previously noted in the AMA1 structure. The D2 loop of PfAMA1-3D7, however, reveals a novel conformation. We analyse the conformational variability of the D2 loop in these structures, together with those previously reported. Three different conformations can be distinguished, all of which are highly helical and show some similarity in their secondary structure organisation. We discuss the significance of these observations in the light of the flexible nature of the D2 loop and its role in AMA1 function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422552 | PMC |
http://dx.doi.org/10.1016/j.yjsbx.2024.100110 | DOI Listing |
Biochimie
January 2025
LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. Electronic address:
This study focuses on the quaternary structure of the viper-secreted phospholipase A (PLA), a central toxin in viper envenomation. PLA enzymes catalyse the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA.
In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.
Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome . Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemistry, Indian Institute of Technology, Delhi 110016, India.
Enhanced sampling (ES) simulations of biomolecular recognition, such as binding small molecules to proteins and nucleic acid targets, protein-protein association, and protein-nucleic acid interactions, have gained significant attention in the simulation community because of their ability to sample long-time scale processes. However, a key challenge in implementing collective variable (CV)-based enhanced sampling methods is the selection of appropriate CVs that can distinguish the system's metastable states and, when biased, can effectively sample these states. This challenge is particularly acute when the binding of a flexible molecule to a conformationally rich host molecule is simulated, such as the binding of a peptide to an RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!