It's crucial to understand the biomechanical properties of brain tissue to comprehend the potential mechanisms of traumatic brain injury. This study, distinct from homogeneous models, integrates axonal coupling in both axial and transverse compressive experiments within a continuum mechanics framework to capture its intricate mechanical behaviors. Fresh porcine brains underwent unconfined compression at strain rates of 0.001/s and 0.1/s to 0.3 strain, allowing for a comprehensive statistical analysis of the directional, regional, and strain-rate-dependent mechanical properties of brain tissue. The established constitutive model, fitted to experimental data, delineates material parameters providing intuitive insights into the stiffness of gray/white matter isotropic matrices and neural fibers. Additionally, it predicts the mechanical performance of white matter matrix and axonal fibers under compressive loading. Results reveal that gray matter is insensitive to loading direction, exhibiting insignificant stiffness variations within regions. White matter, however, displays no significant differences in mechanical properties under axial and transverse loading, with an overall higher average stress than gray matter and a more pronounced strain-rate effect. Stress-strain curves indicate that, under axial compression, white matter axons primarily resist the load before transitioning to a matrix-dominated response. Under transverse loading, axonal fibers exhibit weaker resistance to lateral pressure. The mechanical behavior of brain tissue is highly dependent on loading rate, region, direction, and peak strain. This study, by combining experimentation with phenomenological modeling, elucidates certain phenomena, contributing valuable insights for the development of precise computational models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422615 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e37979 | DOI Listing |
J Neurosurg Pediatr
January 2025
1Division of Neurosurgery, Department of Surgery, Children's Hospital of Philadelphia.
Objective: The natural history of cephaloceles is not well understood. The goal of this study was to better understand the natural history of fetal cephaloceles from prenatal diagnosis to the postnatal period.
Methods: Between January 2013 and April 2023, all patients evaluated with a cephalocele at the Center for Fetal Diagnosis and Treatment were identified.
PLoS One
January 2025
Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.
Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Division of Plastic & Reconstructive Surgery, John H. Stroger Hospital of Cook County, Chicago, IL.
Median craniofacial hypoplasia is characterized by tissue deficiency of the midline facial structures and/or brain. Patients can present with a wide variety of facial differences that may or may not require operative intervention. Common reconstructive procedures include cleft lip and/or palate repair, rhinoplasty, and orthognathic surgery, among others.
View Article and Find Full Text PDFCerebral ischemia-reperfusion injury (CIRI) constitutes a significant etiology of exacerbated cerebral tissue damage subsequent to intravenous thrombolysis and endovascular mechanical thrombectomy in patients diagnosed with acute ischemic stroke. The treatment of CIRI has been extensively investigated through a multitude of clinical studies. Acupuncture has been demonstrated to be effective in treating CIRI.
View Article and Find Full Text PDFClin Neuropharmacol
January 2025
Medical Biochemistry, Erzincan Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey.
Objectives: Our aim was to evaluate the comparative effects of sertraline and vortioxetine against stress-induced brain injury in rats.
Methods: The rats were assigned to a nonstress group (NSG), stress-treated control (StC), sertraline + stress (SSt), and vortioxetine + stress (VSt) groups. Sertraline and vortioxetine (10 mg/kg) were given orally by gavage to the SSt and VSt groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!