A cyano-bridged coordination polymer, K{Co [Fe(CN)]} {(K)Co-Fe}, reported as a highly active heterogeneous catalyst for water oxidation was solubilised by a conventional counter-cation exchange of K with MeN ions to provide the homogeneous catalyst of (MeN){Co [Fe(CN)]} {(MeN)Co-Fe}. (MeN)Co-Fe exhibited enhanced catalytic activity for photocatalytic water oxidation using [Ru(2,2'-bipyridine)] and SO as a photosensitiser and a sacrificial electron acceptor, respectively, in terms of the initial reaction rate (1.26 μmol min), which is about twice that of (K)Co-Fe (0.61 μmol min). Powder X-ray diffraction, pair distribution function and electrospray ionization mass spectrometry measurements of (MeN)Co-Fe manifested that small heptanuclear clusters of {Co[Fe(CN)]} formed by depolymerisation are catalytically active species in solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420958PMC
http://dx.doi.org/10.1039/d4sc04390aDOI Listing

Publication Analysis

Top Keywords

water oxidation
12
enhanced catalytic
8
catalytic activity
8
counter-cation exchange
8
k{co [fecn]}
8
μmol min
8
activity solubilised
4
solubilised species
4
species counter-cation
4
exchange k{co
4

Similar Publications

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

The Laurani high-sulfidation epithermal deposit, located in the northeastern Altiplano of Bolivia, is a representative gold-polymetallic deposit linked to the late Miocene volcanic rocks that were formed approximately at about 7.5 Ma. At Laurani, four mineralization stages are defined.

View Article and Find Full Text PDF

Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.

View Article and Find Full Text PDF

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!