This paper presents a tangle- and contact-free path planning (TCFPP) for a mobile robot attached to a base station with a finite-length cable. This type of robot, called a tethered mobile robot, can endure long-time exploration with a continuous power supply and stable communication via its cable. However, the robot faces potential hazards that endanger its operation such as cable snagging on and cable entanglement with obstacles and the robot. To address these challenges, our approach incorporates homotopy-aware path planning into deep reinforcement learning. The proposed reward design in the learning problem penalizes the cable-obstacle and cable-robot contacts and encourages the robot to follow the homotopy-aware path toward a goal. We consider two distinct scenarios for the initial cable configuration: 1) the robot pulls the cable sequentially from the base while heading for the goal, and 2) the robot moves to the goal starting from a state where the cable has already been partially deployed. The proposed method is compared with naive approaches in terms of contact avoidance and path similarity. Simulation results revealed that the robot can successfully find a contact-minimized path under the guidance of the reference path in both scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422676 | PMC |
http://dx.doi.org/10.3389/frobt.2024.1388634 | DOI Listing |
Philos Trans A Math Phys Eng Sci
January 2025
KIOS Research and Innovation Center of Excellence (KIOS CoE) and Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus.
This work proposes a coverage controller that enables an aerial team of distributed autonomous agents to collaboratively generate non-myopic coverage plans over a rolling finite horizon, aiming to cover specific points on the surface area of a three-dimensional object of interest. The collaborative coverage problem, formulated as a distributed model predictive control problem, optimizes the agents' motion and camera control inputs, while considering inter-agent constraints aiming at reducing work redundancy. The proposed coverage controller integrates constraints based on light-path propagation techniques to predict the parts of the object's surface that are visible with regard to the agents' future anticipated states.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
January 2025
From the Department of Plastic and Reconstructive Surgery, Weill Cornell Medicine, New York, NY.
Background: Identification of peripheral nerve injuries of the head and neck can be challenging due to a broad spectrum of symptoms from neuropathic pain to headaches and migraine. This article aimed to present the clinical features and diagnostic workup of patients with acute and chronic peripheral nerve injuries of the head and neck using magnetic resonance neurography (MRN), to demonstrate potential advantages compared with conventional magnetic resonance imaging (MRI).
Methods: Patients who presented with suspected peripheral nerve injury were either referred for a conventional MRI or MRN.
BMC Oral Health
January 2025
Department of Oral Implantology, The Affiliated Stomatological Hospital of Xuzhou Medical University, 130 Huaihai West Road, Xuzhou, 221003, PR China.
Background: In the maxillary anterior region, differences in bone density along the drilling path can impact the accuracy of implant placement despite the use of a surgical guide. Hence, the aim of this in vitro study was to investigate the accuracy of implant placement using the over-preparation technique in different drilling environments in the maxillary anterior region.
Methods: Three experimental models (a, b, and c) were designed and fabricated to simulate the following drilling environments (n = 60 each): unhealed bone, less dense bone, and dense bone after tooth extraction.
Injury
January 2025
Department of Orthopaedic Surgery, Cedars - Sinai Medical Center, Los Angeles, CA, USA. Electronic address:
Objectives: The purpose of this study is to determine what demographic and anatomical variables affect successful placement of a superior medullary ramus screw, and how they affect the maximal diameter of that screw.
Methods: Design: Prognostic Level IV SETTING: Level I Trauma Center Patients/Participants: Two hundred consecutive patients underwent computed tomography (CT) of the pelvis. We included those patients aged 18 and older without osseous injury or abnormalities precluding measurement.
Nutrients
January 2025
Department of Psychobiology and Methodology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
Background-objectives: Multiple dynamic interacting factors contribute to the presence and progression of eating disorders (ED). Empirical research has provided mixed findings regarding the mechanisms explaining the contribution of body mass index (BMI) to the diverse ED endophenotypes. The present study aims to evaluate the underlying processes (direct and indirect effects) contributing to BMI and ED severity, considering the contribution of multiple neuropsychological constructs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!