Similar Publications

Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.

View Article and Find Full Text PDF

Synthesis of nickel-boron/reduced graphene oxide for efficient and stable lithium-ion storage.

Heliyon

December 2024

Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.

Electrode material capacities and cycle performances must improve for large-scale applications such as energy storage systems. Numerous investigations have developed cathode materials to improve lithium-ion batteries (LIBs) performance: however, few have examined new anode materials. In this study, we synthesized a Ni-B/reduced graphene oxide (RGO) composites via a simple chemical reaction method to enhance the stability of electrodes in LIBs.

View Article and Find Full Text PDF

Transforming plastics into single-atom catalysts is a promising strategy for upcycling waste plastics into value-added functional materials. Herein, a graphene-based single-atom catalyst with atomically dispersed FeNCl sites (Fe─N/Cl─C) is produced from high-density polyethylene wastes via one-pot catalytic pyrolysis. The Fe─N/Cl─C catalyst exhibited much higher turnover frequency and surface area normalized activity (K) compared with the Fe─N─C catalyst without axial Cl modulation.

View Article and Find Full Text PDF

Enhancing Stability and Activity of Fe-based Catalysts for Propane Dehydrogenation via Anchoring Isolated Fe-Cl Sites.

ChemSusChem

January 2025

Beijing Jiaotong University, School of Science, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China, 100044, Beijing, CHINA.

The eco-friendly features and desirable catalytic activities of Fe-based catalysts make them highly promising for propane dehydrogenation (PDH). However, simultaneously improving their stability and activity remains a challenge. Here, we present a strategy to address these issues synergistically by anchoring single-atom Fe-Cl sites in Al3+ vacancies of Al2O3.

View Article and Find Full Text PDF

In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!