Introduction: This study aims to develop co-amorphous Solid Dispersion (SD) system containing antimalarials Artesunate (ARS) and Amodiaquine (AMQ) to improve its oral bioavailability employing the Hot Melt Extrusion (HME) technique. Soluplus was selected as a polymeric excipient, whereas Lutrol F127, Lutrol F68, TPGS, and PEG400 as surfactants were incorporated along with Soluplus to enhance extrudability, improve hydrophilicity, and improve the blend viscosity during HME. Soluplus with surfactant combination successfully stabilizes both drugs during extrusion by generating SD because of its lower glass transition temperature (Tg) and viscoelastic behavior.

Methods: Physicochemical characterizations were performed using FTIR, DSC, TGA, and XRD, which confirmed the amorphousization of drugs in the SD system. The molecular level morphology of the optimized formulation was quantified using high-resolution techniques such as Atomic-Force Microscopy (AFM), Raman spectral, and mapping analysis. The transition of the crystalline drugs into a stable amorphous form has been demonstrated by 1H-NMR and 2D-NMR studies. The pharmacokinetics study in rats showed that the SD-containing drug-Soluplus-TPGS (FDC10) formulation has 36.63-56.13 (ARS-AMQ) folds increase in the Cmax and 41.87-54.34 (ARS-AMQ) folds increase AUC (0-72) as compared to pure drugs.

Results: Pharmacokinetic analysis shows that a fixed-dose combination of 50:135 mg of both APIs (ARSAMQ) significantly increased oral bioavailability by elevating Cmax and AUC, in comparison to pure APIs and also better than the marketed product Coarsucam.

Conclusion: Therefore, the developed melt extruded co-amorphous formulation has enhanced bioavailability and has more effectiveness than the marketed product Coarsucam. .

Download full-text PDF

Source
http://dx.doi.org/10.2174/0113892002330772240912055518DOI Listing

Publication Analysis

Top Keywords

hot melt
8
melt extruded
8
solid dispersion
8
dispersion system
8
oral bioavailability
8
ars-amq folds
8
folds increase
8
marketed product
8
development hot
4
extruded co-formulated
4

Similar Publications

Development and stability of W1/O/W2 double emulsions stabilized by food-grade nanoparticles.

Food Chem

December 2024

Nano-biotechnology Key Laboratory of Hebei Province, State Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. Electronic address:

This study presented the well stable W1/O/W2 double emulsions stabilized by food-grade nanoparticles. Firstly, the nanoparticles were prepared based on soybean protein isolate and Hohenbuehelia serotina polysaccharides by physical effects, which had the elliptical morphology and the average particle size of 639.96 nm.

View Article and Find Full Text PDF

Egg sausages, an essential component of traditional Chinese hot pot cuisine, have specific storage requirements and are predominantly distributed through refrigerated channels. A significant consideration in the freezing of egg sausages pertains to syneresis and textural modifications that manifest in the protein gel structure upon thawing. This research investigated the efficacy of incorporating whey protein isolate, soy protein isolate (at concentrations of 0.

View Article and Find Full Text PDF

Development of Immediate Release Tablet Formulations of Lornoxicam with Hot Melt Extrusion Based Three-Dimensional Printing Technology.

Drug Dev Ind Pharm

December 2024

Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06330 Etiler, Ankara, Türkiye.

Introduction: This study aims to develop immediate release tablet formulations of lornoxicam (LRX) using hot melt extrusion (HME)-based fused deposition modelling (FDM) focusing on the adjustment of drug release by arranging infill densities and evaluating microcrystalline cellulose II (MCC II) as a disintegrating agent for HME-FDM purposes. LRX is a poorly soluble drug that exhibits pH-dependent solubility with a high thermal degradation temperature. These characteristics make it an ideal model drug for the HME-based FDM technique.

View Article and Find Full Text PDF

AbstractChanging climates are driving population declines in diverse animals worldwide. Winter conditions may play an important role in these declines but are often overlooked. Animals must not only survive winter but also preserve body condition, a key determinant of growing season success.

View Article and Find Full Text PDF

Printing Untethered Self-Reconfigurable, Self-Amputating Soft Robots from Recyclable Self-Healing Fibers.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.

Regarding the challenge of self-reconfiguration and self-amputation of soft robots, existing studies mainly focus on modular soft robots and connection methods between modules. Different from these studies, this study focus on the behavior of individual soft robots from a material perspective. Here, a kind of soft fibers, which consist of hot melt adhesive particles, magnetizable microparticles, and ferroferric oxide microparticles embedded in a thermoplastic polyurethane matrix are proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!