Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neurological disease due to single-gene defects represents a targetable entity for adeno-associated virus (AAV)-mediated gene therapy. The delivery of AAV-mediated gene therapy to the brain is challenging, owing to the presence of the blood-brain barrier. Techniques in gene transfer, such as convection-enhanced intraparenchymal delivery and image-guided delivery to the cerebrospinal fluid spaces of the brain, have led the field into highly accurate delivery techniques, which provide correction of genetic defects in specific brain regions or more broadly. These techniques commonly use magnetic resonance imaging (MRI), computed tomography, and fluoroscopic guidance. Even more, the neuroimaging changes evaluated by MRI, MR spectroscopy, diffusion tensor imaging, and functional MRI can serve as important biomarkers of therapy effect and overall disease progression. Here, we discuss the role of neuroimaging in delivering AAV vectors and monitoring the effect of gene therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/hum.2024.057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!