As the largest freshwater lake in China, Poyang Lake plays a key role in supporting the balance of aquatic ecosystems, and the water quality of its inlet rivers affects the lake's water quality. Le'an River, a typical inlet river of Poyang Lake, was selected as the research object. Based on the water quality data of six monitoring points in the upper, middle, and lower reaches of the mainstream of Le'an River from 2012 to 2020, the CCME-WQI method was used to evaluate the water quality of the river after systematically analyzing the spatiotemporal variation of the concentration of pollutants in the mainstream of the river. Finally, the main influencing factors of the water quality of the river were extracted and analyzed according to the PCA method. The results showed that: ① The water volume upstream and downstream of the river was more seriously polluted in the pre-study time period, which was due to the presence of Dexing Copper Mine in the upstream and small and medium-sized mines and farmland downstream. ② Before 2017, the water volume downstream of Le'an River had the worst water quality, with TP and NH-N exceeding the standard rate of 43.3% and 85.0%, respectively, and the lowest WQI mean value of 86.2. After 2017, due to the effective management of pollutant discharges in the watershed, the water volume downstream of the river improved significantly and continued to be in an excellent state, and the mean value of the WQI reached 100.0. ③ The factors influencing the water quality of the mainstem of the Le'an River could be divided into four categories: human activities, seasonal factors, atmospheric deposition of pollutants, and the physical and chemical properties of the water volume itself, with human activities being the dominant factor for water quality changes at Dawuhekou and Shizhenjie, whereas the seasonal factors had the greatest influence at the remaining locations. ④ Organic matter pollution was obvious in the upper and lower Le'an River water volume, and the water volume at Dawuhekou was mainly affected by nearby mining activities, whereas the water volume at Shizhenjie was mainly affected by agriculture. Le'an River had serious organic matter pollution downstream before 2017, and mining and agricultural activities in the watershed had a high degree of impact on water quality. The treatment of mineral processing wastewater should be upgraded, and the discharge of pollutants from agriculture in the downstream of the watershed should be regulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202309243 | DOI Listing |
Food Chem
December 2024
College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China. Electronic address:
This study aimed to investigate the effects of freezing duration and matcha concentration on the rheological properties, moisture distribution, and multiscale structure of dough. The results indicated that both freezing and high concentrations of matcha (≥1 %) significantly reduced the stiffness of the dough matrix, restricted its ability to expand during fermentation, and disrupted the structure of gluten protein. Furthermore, freezing induced moisture redistribution within the dough.
View Article and Find Full Text PDFFood Chem
December 2024
Departamento de Ingeniería Química Alimentos y Ambiental, Universidad de las Américas Puebla, San Andrés Cholula, Puebla 72810, Mexico. Electronic address:
This study assesses the impact of grape juice-based alginate or chitosan edible coatings, followed by UVC treatment, on the preservation of post-harvest quality of Red Globe grapes. Coated grapes were stored at 5 °C for 28 days, and their physical, chemical, microbiological, and sensory properties were assessed during the storage period. Films were prepared with grape juice using alginate and chitosan and exposed to 32.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Engineering, Hainan University, Haikou 570228, China.
Hydrogen peroxide (HO) was used to modify a natural polymer, sesbania gum (SG), to prepare oxidized sesbania gum (OSG) with the aim of investigating the physicochemical properties, antimicrobial activity of polyethylene oxide (PEO), OSG, and ε-poly(lysine) (ε-PL) composite fibre membranes and their applications in fresh-cut mango preservation. The PEO/OSG/ε-PL composite fibre membranes were successfully prepared via solution blow spinning (SBS) technology. The results of a series of characterizations revealed that ε-PL was successfully loaded into the fibrous membranes, exhibited good biocompatibility, and ε-PL was better encapsulated, with the membranes.
View Article and Find Full Text PDFEnviron Technol
January 2025
Department of Materials Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
This study synthesises expanded graphite (EG) from graphitised carbon from waste polyethylene terephthalate (PET) bottles. The adsorbent material was characterised using FTIR, XRF, XRD, SEM, Raman Spectroscopy, and BET surface area analysis. The synthesised EG defluorinated wastewater, utilising response surface methodology (RSM) for experimental design and optimisation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health Engineering, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran.
Climate change significantly impacts the risk of eutrophication and, consequently, chlorophyll-a (Chl-a) concentrations. Understanding the impact of water flows is a crucial first step in developing insights into future patterns of change and associated risks. In this study, the Statistical DownScaling Model (SDSM)-a widely used daily downscaling method-is implemented to produce downscaled local climate variables, which serve as input for simulating future hydro-climate conditions using a hydrological model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!