Alzheimer's disease (AD) is the most common neurodegenerative disease burdening public health. We proposed a network-based infrastructure to identify protein signatures for five AD pathological endophenotypes: amyloidosis, tauopathy, vascular dysfunction, lysosomal dysfunction, and neuroinflammation. We analyzed 23 proteomic data sets from AD patients and transgenic mouse models, using network proximity to measure associations between endophenotype modules and differentially expressed proteins (DEPs) in the integrated AD proteome. We focused on the vascular dysfunction signature with 21 DEPs by integrating RNA-seq, single-cell transcriptomics, GWAS, and literature. Experiments on APP/PS1 and MCAO models highlighted three proteins (SEPT5, SNAP25, STXBP1) as novel AD biomarker candidates. This study demonstrates a network medicine framework for deciphering endophenotype signatures in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.4c01344 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Neurology and Geriatrics, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China.
The aim was to explore the application value of dynamic electroencephalography (EEG) combined with brainstem auditory evoked potential (BAEP) in evaluating the degree of vascular stenosis and prognosis in patients with ischemic stroke (IS). This was a retrospective study using clinical data of patients with IS admitted to the First Affiliated Hospital of Chongqing Medical and Pharmaceutical College from March 2020 to March 2022. The degree of vascular stenosis and prognosis of patients were analyzed.
View Article and Find Full Text PDFAm J Hypertens
January 2025
3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Greece.
Background: Changes in retinal vessel caliber are crucial for detecting early retinopathy, a significant cause of blindness in individuals with Diabetes Mellitus type 2 (T2DM). This study aims to evaluate the changes in retinal vessel caliber and identify factors associated with these changes in recently diagnosed T2DM patients.
Methods: The study included newly diagnosed T2DM patients (within 6 months of diagnosis) who were free of antidiabetic treatment (except metformin) and matched individuals based on age and blood pressure (BP).
Curr Cardiol Rep
January 2025
Department of Cardiovascular & Thoracic Surgery, Sandra Atlas Bass Heart Hospital at North Shore University Hospital, Northwell Health, 300 Community Drive, 1 DSU, Manhasset, NY, 11030, USA.
Purpose Of Review: This article discusses a tailored approach to managing cardiogenic shock and temporary mechanical circulatory support (tMCS). We also outline specific mobilization strategies for patients with different tMCS devices and configurations, which can be enabled by this tailored approach to cardiogenic shock management.
Recent Findings: Safe and effective mobilization of patients with cardiogenic shock receiving tMCS can be accomplished.
Cells
December 2024
Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China.
Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!