A realistic benchmark for differential abundance testing and confounder adjustment in human microbiome studies.

Genome Biol

Structural and Computational Biology Unit (SCB), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

Published: September 2024

Background: In microbiome disease association studies, it is a fundamental task to test which microbes differ in their abundance between groups. Yet, consensus on suitable or optimal statistical methods for differential abundance testing is lacking, and it remains unexplored how these cope with confounding. Previous differential abundance benchmarks relying on simulated datasets did not quantitatively evaluate the similarity to real data, which undermines their recommendations.

Results: Our simulation framework implants calibrated signals into real taxonomic profiles, including signals mimicking confounders. Using several whole meta-genome and 16S rRNA gene amplicon datasets, we validate that our simulated data resembles real data from disease association studies much more than in previous benchmarks. With extensively parametrized simulations, we benchmark the performance of nineteen differential abundance methods and further evaluate the best ones on confounded simulations. Only classic statistical methods (linear models, the Wilcoxon test, t-test), limma, and fastANCOM properly control false discoveries at relatively high sensitivity. When additionally considering confounders, these issues are exacerbated, but we find that adjusted differential abundance testing can effectively mitigate them. In a large cardiometabolic disease dataset, we showcase that failure to account for covariates such as medication causes spurious association in real-world applications.

Conclusions: Tight error control is critical for microbiome association studies. The unsatisfactory performance of many differential abundance methods and the persistent danger of unchecked confounding suggest these contribute to a lack of reproducibility among such studies. We have open-sourced our simulation and benchmarking software to foster a much-needed consolidation of statistical methodology for microbiome research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423519PMC
http://dx.doi.org/10.1186/s13059-024-03390-9DOI Listing

Publication Analysis

Top Keywords

differential abundance
24
abundance testing
12
association studies
12
disease association
8
statistical methods
8
real data
8
abundance methods
8
abundance
7
differential
6
studies
5

Similar Publications

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

Evaluation of Cartilage-Like Matrix Formation in a Nucleus Pulposus-Derived Cartilage Analog Scaffold.

J Biomed Mater Res B Appl Biomater

January 2025

The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.

View Article and Find Full Text PDF

Background: The relationship between gut microbiota composition, lifestyles, and colonic transit time (CTT) remains poorly understood. This study investigated associations among gut microbiota profiles, diet, lifestyles, and CTT in individuals with subjective constipation.

Methods: We conducted a secondary analysis of data from our randomized clinical trial, examining gut microbiota composition, CTT, and dietary intake in baseline and final assessments of 94 participants with subjective constipation.

View Article and Find Full Text PDF

Metabolomics Unveiled the Accumulation Characteristics of Taste Compounds During the Development and Maturation of Litchi Fruit.

Foods

January 2025

Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

Litchi is one of the ancient fruits that originated in China, renowned for its high nutrition and rich flavor, and Xianjinfeng (XJF) stands as one of the most notable varieties in terms of its flavor. Investigating the metabolic changes in taste compounds during fruit development offers deeper insights into the formation patterns of fruit quality. In this study, we conducted extensive metabonomic research on the accumulation patterns of taste compounds (carbohydrates, organic acids, and amino acids) across three developmental stages of XJF litchi.

View Article and Find Full Text PDF

Group V Chitin Deacetylases Are Responsible for the Structure and Barrier Function of the Gut Peritrophic Matrix in the Chinese Oak Silkworm .

Int J Mol Sci

December 2024

Liaoning Engineering and Technology Research Center for Insect Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.

Chitin deacetylases (CDAs) are carbohydrate esterases associated with chitin metabolism and the conversion of chitin into chitosan. Studies have demonstrated that chitin deacetylation is essential for chitin organization and compactness and therefore influences the mechanical and permeability properties of chitinous structures, such as the peritrophic membrane (PM) and cuticle. In the present study, two genes ( and ) encoding CDA protein isoforms were identified and characterized in Chinese oak silkworm () larvae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!