Crystallization is a commonly used unit operation for separation and purification. During processing, crystals may break due to mechanical stress, e.g., intentionally by milling or unintentionally through collision with stirrers. This study investigates the growth of broken crystals in three dimensions using X-ray micro-computed tomography. The results show that damaged regions of crystals grow faster than faceted regions, and crystals become faceted through growth. Initially, this happens on a microscale, producing faceted but concave regions on the crystal surface. Eventually, crystals become convex. Shape-healing through growth incorporates inclusions in the crystals. These findings have important implications for designing and optimizing crystallization processes in the pharmaceutical, food, and chemical industries, as purity is often a critical quality criterion adversely affected by inclusions. In addition, the kinetics in crystallization processes are likely to be strongly affected by the growth of non-faceted and concave crystals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424629 | PMC |
http://dx.doi.org/10.1038/s41598-024-73127-y | DOI Listing |
Mater Horiz
January 2025
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark.
The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address:
Polyvinyl chloride (PVC) is a widely used plastic, but the potential risk of heavy metal additive release from PVC microplastics (MPs) has not been fully explored. This study evaluates the release of lead (Pb) from recycled PVC MPs under natural conditions. The released Pb concentration in the dark was 1079.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of Pediatrics and Child Health Nursing, College of Medicine and Health Sciences, School of Nursing, University of Gondar, Gondar, Ethiopia.
Introduction: The absence of a biological parent from a child's existence had a negative impact on the child's growth, socialization, psychological wellbeing, and economic productivity. Developing nations like Ethiopia experience a huge number of orphans and family-unbounded children. But the exact figure has not been reported yet at the national level recently.
View Article and Find Full Text PDFJ Dent Child (Chic)
September 2024
Department of Oral and Maxillofacial Surgery, Tufts University School of Dental Medicine, Boston, Mass., USA.
J Fungi (Basel)
November 2024
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
Precocious sexual inducer (psi)-producing oxygenases (Ppos) participate in the production of C8 moldy volatile compounds (MVOCs), and these compounds could act as signal molecules modulating G protein signaling cascades, which participates in the growth and development, secondary metabolisms and pathogenicity of filamentous fungi. In this study, PePpoA and PePpoC proteins were identified in . The deletion of decreased C8 MVOC production in , while they were not detected in the strain ( < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!