A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamics of a single cavitation bubble near an oscillating boundary. | LitMetric

Dynamics of a single cavitation bubble near an oscillating boundary.

Sci Rep

Institute of Ship Technology, Ocean Engineering and Transport Systems (ISMT), University of Duisburg-Essen, Bismarckstr. 69, 47057, Duisburg, Germany.

Published: September 2024

AI Article Synopsis

  • The article explores the behavior of a single cavitation bubble in proximity to an oscillating boundary, which is a novel approach compared to previous research focused on rigid or elastic surfaces.
  • Key experiments involved generating the bubble via laser in water and analyzing bubble dynamics at two different distances from a flat glass plate, using advanced imaging techniques to capture the interactions.
  • The findings revealed that oscillating boundaries significantly accelerate bubble collapse times (by 4-15%), leading to insights on energy concentration and implications for managing cavitation effects.

Article Abstract

Cavitation and its effects are well investigated, especially single bubble cavitation and its collapse near rigid and elastic boundaries. In our current article, we investigated novel experiments of a single cavitation bubble near an oscillatory boundary. We generated the cavitation bubble by laser focusing in water. A flat glass plate was fixed to the shaft of the magnetostriction oscillator coil. We investigated the dynamics of bubbles at two relative wall distances (ratio of the distance between the bubble center and plate surface to the maximum radius of the bubble) of the bubble from the glass plate in combination with four modes of oscillation. Each mode has specific frequency and amplitude of oscillation. The high-speed camera captured the dynamics of the bubble using the back-illumination method with a framing rate of 120Kfps and simultaneously we used an optical CMOS sensor to measure the oscillation of the glass plate. We presented a clear comparison among the bubble dynamics near stationary and oscillating plates with parameters such as oscillating modes and direction. We correlated the dynamics of the bubble with the motion of the plate. In addition, we highlighted the differences including the characteristics of bubble shape and jetting that occurred during the collapse phase. The comparison of the time histories of the bubble's equivalent size postulated that the bubble's collapse times vary significantly in some cases compared to the bubble's dynamics near the stationary plate. In all cases, we noticed the shortening of the bubble's collapsing time, i.e. accelerated collapses. In our findings, we noticed a collapse times reduction of about 4-15%. Our finding signifies the importance of introducing the oscillation of the boundaries to obtain effective energy concentration over the time during the collapse. Our study also suggests that forced oscillation of boundaries is undesirable for destructive cavitation effects. The method we suggested for the manipulation of bubble dynamics holds potential for enhancing the efficiency of applications such as lithotripsy in biomedical devices, actuation and micro pumping in microfluidic devices, and effective semiconductor surface cleaning. Not but least, obtained results can be used as benchmark in future for validating numerical methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424622PMC
http://dx.doi.org/10.1038/s41598-024-73540-3DOI Listing

Publication Analysis

Top Keywords

bubble
12
cavitation bubble
12
glass plate
12
single cavitation
8
cavitation effects
8
dynamics bubble
8
bubble dynamics
8
dynamics stationary
8
collapse times
8
oscillation boundaries
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!