Targeting nerve growth factor for pain relief: pros and cons.

Korean J Pain

Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman, Jordan.

Published: October 2024

AI Article Synopsis

  • Nerve growth factor (NGF) is a key protein important for the survival, growth, and differentiation of neurons, influencing both neuronal and non-neuronal tissues.
  • NGF operates through two main receptors, one high-affinity (tropomyosin receptor kinase A) and one low-affinity (p75 neurotrophin receptor), indicating complex signaling mechanisms at play.
  • Research shows that NGF significantly affects various pain types—including inflammatory, neuropathic, cancer, and visceral pain—by increasing the availability of nociceptive receptors and transmitters, which has been demonstrated in both pre-clinical and clinical studies.

Article Abstract

Nerve growth factor (NGF) is a neurotrophic protein that has crucial roles in survival, growth and differentiation. It is expressed in neuronal and non-neuronal tissues. NGF exerts its effects via two types of receptors including the high affinity receptor, tropomyosin receptor kinase A and the low affinity receptor p75 neurotrophin receptor highlighting the complex signaling pathways that underlie the roles of NGF. In pain perception and transmission, multiple studies shed light on the effects of NGF on different types of pain including inflammatory, neuropathic, cancer and visceral pain. Also, the binding of NGF to its receptors increases the availability of many nociceptive receptors such as transient receptor potential vanilloid 1, transient receptor potential ankyrin 1, N-methyl-D-aspartic acid, and P2X purinoceptor 3 as well as nociceptive transmitters such as substance P and calcitonin gene-related peptide. The role of NGF in pain has been documented in pre-clinical and clinical studies. This review aims to shed light on the role of NGF and its signaling in different types of pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450303PMC
http://dx.doi.org/10.3344/kjp.24235DOI Listing

Publication Analysis

Top Keywords

nerve growth
8
growth factor
8
affinity receptor
8
ngf pain
8
types pain
8
transient receptor
8
receptor potential
8
role ngf
8
ngf
7
pain
6

Similar Publications

The application of aptamers in the repair of bone, nerve, and vascular tissues.

J Mater Chem B

January 2025

Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.

Aptamers represent a distinct category of short nucleotide sequences or peptide molecules characterized by their ability to bind to specific targets with high precision. These molecules are predominantly synthesized through SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology. Recent findings indicate that aptamers may have significant applications in regenerative medicine, particularly in the domain of tissue repair.

View Article and Find Full Text PDF

Bioinspired conductive oriented nanofiber felt with efficient ROS clearance and anti-inflammation for inducing M2 macrophage polarization and accelerating spinal cord injury repair.

Bioact Mater

April 2025

School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.

Complete spinal cord injury (SCI) causes permanent locomotor, sensory and neurological dysfunctions. Targeting complex immunopathological microenvironment at SCI sites comprising inflammatory cytokines infiltration, oxidative stress and massive neuronal apoptosis, the conductive oriented nanofiber felt with efficient ROS clearance, anti-inflammatory effect and accelerating neural regeneration is constructed by step-growth addition polymerization and electrostatic spinning technique for SCI repair. The formation of innovative Fe-PDA-PAT chelate in nanofiber felt enhances hydrophilic, antioxidant, antibacterial, hemostatic and binding factor capacities, thereby regulating immune microenvironment of SCI.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a neurological condition that causes significant loss of sensory, motor, and autonomic functions below the level of injury. Current clinical treatment strategies often fail to meet expectations. Hyaluronidase is typically associated with tumor progression and bacterial infections.

View Article and Find Full Text PDF

New techniques for largescale neural recordings from diverse animals are reshaping comparative systems neuroscience. This growth necessitates fresh conceptual paradigms for comparing neural circuits and activity patterns. Here, we take a systems neuroscience approach to early neural evolution, emphasizing the importance of considering nervous systems as multiply modulated, continuous dynamical systems.

View Article and Find Full Text PDF

Bafilomycin A1 mitigates subchondral bone degeneration and pain in TMJOA rats.

Int Immunopharmacol

January 2025

Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China. Electronic address:

Background: Pain and disability are primary concerns for temporomandibular joint osteoarthritis (TMJOA) patients, and the efficacy of current treatments remains controversial. Overactive osteoclasts are associated with subchondral bone degeneration and pain in OA. The vacuolar H+-ATPase (V-ATPase) is crucial for differentiation and function in osteoclasts, but its role in TMJOA is not well defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!