Dynamic functional connectivity in verbal cognitive control and word reading.

Neuroimage

Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, United States; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, United States; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48858, United States; Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, United States. Electronic address:

Published: October 2024

Cognitive control processes enable the suppression of automatic behaviors and the initiation of appropriate responses. The Stroop color naming task serves as a benchmark paradigm for understanding the neurobiological model of verbal cognitive control. Previous research indicates a predominant engagement of the prefrontal and premotor cortex during the Stroop task compared to reading. We aim to further this understanding by creating a dynamic atlas of task-preferential modulations of functional connectivity through white matter. Patients undertook word-reading and Stroop tasks during intracranial EEG recording. We quantified task-related high-gamma amplitude modulations at 547 nonepileptic electrode sites, and a mixed model analysis identified regions and timeframes where these amplitudes differed between tasks. We then visualized white matter pathways with task-preferential functional connectivity enhancements at given moments. Word reading, compared to the Stroop task, exhibited enhanced functional connectivity in inter- and intra-hemispheric white matter pathways from the left occipital-temporal region 350-600 ms before response, including the posterior callosal fibers as well as the left vertical occipital, inferior longitudinal, inferior fronto-occipital, and arcuate fasciculi. The Stroop task showed enhanced functional connectivity in the pathways from the left middle-frontal pre-central gyri, involving the left frontal u-fibers and anterior callosal fibers. Automatic word reading largely utilizes the left occipital-temporal cortices and associated white matter tracts. Verbal cognitive control predominantly involves the left middle frontal and precentral gyri and its connected pathways. Our dynamic tractography atlases may serve as a novel resource providing insights into the unique neural dynamics and pathways of automatic reading and verbal cognitive control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500755PMC
http://dx.doi.org/10.1016/j.neuroimage.2024.120863DOI Listing

Publication Analysis

Top Keywords

functional connectivity
20
cognitive control
20
verbal cognitive
16
white matter
16
word reading
12
stroop task
12
matter pathways
8
enhanced functional
8
pathways left
8
left occipital-temporal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!