A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatiotemporal profiles and underlying mechanisms of the antibiotic resistome in two water-diversion lakes. | LitMetric

Spatiotemporal profiles and underlying mechanisms of the antibiotic resistome in two water-diversion lakes.

Environ Res

State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • Human activities have changed lake ecosystems, affecting how antibiotic resistance genes (ARGs) behave in these environments, especially in water-diversion lakes like Nansi and Dongping.
  • A study identified 653 ARG subtypes in these lakes, indicating seasonal changes, the influence of human modifications, and the presence of harmful bacteria linked to multidrug resistance.
  • Key findings highlight that seasonal factors such as pH and temperature significantly impact bacterial communities and ARG profiles, emphasizing the need for better understanding and management of these water systems.

Article Abstract

Human-induced interventions have altered the local characteristics of the lake ecosystems through changes in hydraulic exchange, which in turn impacts the ecological processes of antibiotic resistance genes (ARGs) in the lakes. However, the current understanding of the spatiotemporal patterns and driving factors of ARGs in water-diversion lakes is still seriously insufficient. In the present study, we investigated antibiotic resistome in the main regulation and storage hubs, namely Nansi Lake and Dongping Lake, of the eastern part of the South-to-North Water Diversion project in Shandong Province (China) using a metagenomic-based approach. A total of 653 ARG subtypes belonging to 25 ARG types were detected with a total abundance of 0.125-0.390 copies/cell, with the dominance of bacitracin, multidrug, and macrolide-lincosamide streptogramin resistance genes. The ARG compositions were sensitive to seasonal variation and also interfered by artificial regulation structures along the way. Human pathogenic bacteria such as Acinetobacter calcoaceticus, Acinetobacter lwoffii, Klebsiella pneumoniae, along with the multidrug resistance genes they carried, were the focus of risk control in the two studied lakes, especially in summer. Plasmids were the key mobile genetic elements (MGEs) driving the horizontal gene transfer of ARGs, especially multidrug and sulfonamide resistance genes. The null model revealed that stochastic process was the main driver of ecological drift for ARGs in the lakes. The partial least squares structural equation model further determined that seasonal changes of pH and temperature drove a shift in the bacterial community, which in turn shaped the profile of ARGs by altering the composition of MGEs, antibacterial biocide- and metal-resistance genes (BMGs), and virulence factor genes (VFGs). Our results highlighted the importance of seasonal factors in determining the water transfer period. These findings can aid in a deeper understanding of the spatiotemporal variations of ARGs in lakes and their driving factors, offering a scientific basis for antibiotic resistance management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120051DOI Listing

Publication Analysis

Top Keywords

resistance genes
16
args lakes
12
antibiotic resistome
8
water-diversion lakes
8
antibiotic resistance
8
understanding spatiotemporal
8
driving factors
8
lakes
6
genes
6
args
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!