The prevalence of neurodegenerative diseases (NDs) is increasing rapidly as the aging population accelerates, and there are still no treatments to halt or reverse the progression of these diseases. While traditional 2D cultures and animal models fail to translate into effective therapies benefit patients, 3D cultured human brain organoids (hBOs) facilitate the use of non-invasive methods to capture patient data. The purpose of this study was to review the research and application of hBO in disease models and drug screening in NDs. The pluripotent stem cells are induced in multiple stages to form cerebral organoids, brain region-specific organoids and their derived brain cells, which exhibit complex brain-like structures and perform electrophysiological activities. The brain region-specific organoids and their derived neurons or glial cells contribute to the understanding of the pathogenesis of NDs and the efficient development of drugs, including Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Glial-rich brain organoids facilitate the study of glial function and neuroinflammation, including astrocytes, microglia, and oligodendrocytes. Further research on the maturation enhancement, vascularization and multi-organoid assembly of hBO will help to enhance the research and application of NDs cellular models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2024.102517 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!