A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A vacuolar protein MaSCPL1 mediates anthocyanin acylation modifications in blue-flowered grape hyacinth. | LitMetric

A vacuolar protein MaSCPL1 mediates anthocyanin acylation modifications in blue-flowered grape hyacinth.

Plant Sci

College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China. Electronic address:

Published: December 2024

The grape hyacinth is renowned for its profuse blue flowers, which confer substantial scientific and ornamental significance as well as considerable potential for industrial applications. The serine carboxypeptidase-like acyltransferases (SCPL-ATs) family is crucial for the blue flower coloration. To elucidate SCPL-ATs involved in anthocyanin modification in grape hyacinth, we performed a transcriptomic analysis of grape hyacinth SCPL-ATs. Through gene expression profiling, we identified a promising candidate gene, MaSCPL1, whose expression patterns corresponded with variations in anthocyanin content throughout petal coloration. Subsequently, the functional role of the MaSCPL1 gene was validated using the native petal regeneration system, and the silencing of MaSCPL1 led to a decreased total anthocyanin content and Dp3MG content in grape hyacinth petals. Furthermore, we employed yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), and dual-luciferase assays to explore the regulatory interactions between the anthocyanin biosynthesis transcription factor MaMybA and the MaSCPL1 promoter. Our findings indicate that MaMybA can bind to the MaSCPL1 promoter and significantly activate its expression. Furthermore, the MaMybA-RNAi resulted in a substantial multifold reduction in the expression of MaSCPL1, implying that the regulation of MaSCPL1 expression is mediated by MaMybA. This study revealed the MaSCPL1 gene has been associated with anthocyanin acylated modification in grape hyacinth and elucidated the important role of the MaMybA-MaSCPL1 module in colouration grape hyacinth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2024.112273DOI Listing

Publication Analysis

Top Keywords

grape hyacinth
28
mascpl1
9
modification grape
8
mascpl1 expression
8
anthocyanin content
8
mascpl1 gene
8
mascpl1 promoter
8
grape
7
hyacinth
7
anthocyanin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!