Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination.

J Mol Biol

Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom. Electronic address:

Published: January 2025

AI Article Synopsis

  • Aberrant gene expression is key in many diseases due to disruptions in mRNA processing.
  • Variations in 3' end processing can be regulated or random, affecting gene expression differently—small changes allow for flexibility, while larger changes can cause serious health issues.
  • Issues can stem from mutations in single genes or broader changes that impact numerous genes, highlighting the importance of understanding these processing mechanisms.

Article Abstract

Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2024.168802DOI Listing

Publication Analysis

Top Keywords

transcription termination
12
processing transcription
8
gene expression
8
fateful decisions
4
decisions cut
4
cut pathology
4
pathology associated
4
associated aberrant
4
processing
4
aberrant processing
4

Similar Publications

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site.

View Article and Find Full Text PDF

Background: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

RNA recognition by minimal ProQ from Neisseria meningitidis.

RNA

January 2025

Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland

Neisseria meningitidis minimal ProQ is a global RNA binding protein belonging to the family of FinO-domain proteins. The N. meningitidis ProQ consists only of the FinO domain accompanied by short N- and C-terminal extensions.

View Article and Find Full Text PDF

A deep learning framework for screening of anticancer drugs at the single-cell level.

Natl Sci Rev

February 2025

Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China.

Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!