Light harvesting proteins are optimized to efficiently collect and transfer light energy for photosynthesis. In eukaryotic dinoflagellates these complexes utilize chlorophylls and a special carotenoid, peridinin, and arrange them for efficient excitation energy transfer. At the same time, the carotenoids protect the system by quenching harmful chlorophyll triplet states. Here we use advanced spectroscopic techniques and X-ray structure analysis to investigate excitation energy transfer processes in the major soluble antenna, the peridinin chlorophyll a protein (PCP) from the free living dinoflagellate Heterocapsa pygmaea. We determined the 3D-structure of this complex at high resolution (1.2 Å). For better comparison, we improved the reference structure of this protein from Amphidinium carterae to a resolution of 1.15 Å. We then used fs and ns time-resolved absorption spectroscopy to study the mechanisms of light harvesting, but also of the photoprotective quenching of the chlorophyll triplet state. The photoprotection site was further characterized by Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy to yield information on water molecules involved in triplet-triplet energy transfer. Similar to other PCP complexes, excitation energy transfer from peridinin to chlorophyll is found to be very efficient, with transfer times in the range of 1.6-2.1 ps. One of the four carotenoids, the peridinin 614, is well positioned to quench the chlorophyll triplet state with high efficiency and transfer times in the range of tens of picoseconds. Our structural and dynamic data further support, that the intrinsic water molecule coordinating the chlorophyll Mg ion plays an essential role in photoprotection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2024.149510DOI Listing

Publication Analysis

Top Keywords

energy transfer
16
excitation energy
12
chlorophyll triplet
12
heterocapsa pygmaea
8
light harvesting
8
peridinin chlorophyll
8
triplet state
8
transfer times
8
times range
8
transfer
7

Similar Publications

Single atom alloys aggregation in the presence of ligands.

Nanoscale

January 2025

Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.

View Article and Find Full Text PDF

Three new manganese compounds on 5-(pyridin-2-yl)-3-phenyl-1,2,4-triazole (L) basis (HL)[MnBr]·HO (1), (HL)[MnCl] (2) and [MnLCl]·HO (3) have been synthesized and characterized in terms of their structure, photoluminescence (PL), and electroluminescence (EL) properties. Compounds 1 and 2 exhibit bright green luminescence ( ≈ 550 nm) with high quantum yields of 75.1 and 71.

View Article and Find Full Text PDF

Hot carrier dynamics in the BAPbBr/MoS heterostructure.

Nanoscale

January 2025

Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.

Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BAPbBr perovskite and its heterostructure with MoS. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS, leading to enhancement in the photoluminescence intensity of MoS. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure.

View Article and Find Full Text PDF

AA-Stacked Hydrogen-Substituted Graphdiyne for Enhanced Lithium Storage.

Angew Chem Int Ed Engl

January 2025

Leibniz University Hanover: Leibniz Universitat Hannover, Institute for Solid State Physics, GERMANY.

Graphdiyne (GDY) has been considered a promising electrode material for application in electrochemical energy storage. However, studies on GDY featuring an ordered interlayer stacking are lacking, which is supposed to be another effective way to increase lithium binding sites and diffusion pathways. Herein, we synthesized a hydrogen-substituted GDY (HsGDY) with a highly-ordered AA-stacking structure via a facile alcohol-thermal method.

View Article and Find Full Text PDF

This study investigates the photophysical behaviour of Mn/Fe and Mn/Sn co-doped CsPbCl3 perovskite nanocrystals (NCs) to explore carrier dynamics and dopant interactions. Using gated photoluminescence (PL) and temperature-dependent measurements, we elucidate the impact of dopant chemistry on exciton behaviour, focusing on vibrationally assisted delayed fluorescence (VADF) and energy transfer mechanisms. The efficiency of VADF is influenced by factors such as the bandgap, temperature, quantum confinement, and host composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!