This article critically reviews research on tornado theory and observations over the last decade. From the theoretical standpoint, the major advances have come through improved numerical-simulation models of supercell convective storms, which contain the tornado's parent circulation. These simulations are carried out on a large domain (to capture the supercell's circulation system), but with high grid resolution and improved representations of sub-grid physics (to capture the tornado). These simulations offer new insights into how and why tornadoes form in some supercells, but not others. Observational advances have come through technological improvements of mobile Doppler radars capable of rapid scanning and dual-polarization measurements, which offer a much more accurate view of tornado formation, tornado structure, and the tornado's place within its parent supercell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6633/ad7f6a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!