Xeroderma pigmentosum group A (XPA) is an inherited skin disorder characterized by sensitivity to ultraviolet radiation. In Maghrebi patients, a homozygous mutation in exon 6 of the XPA gene (c.682C>T) results in the introduction of a premature termination codon. Using CRISPR/Cas9-mediated gene editing, this mutation was introduced into the well-characterized LUMCi004-A line. The resulting hiPSC line showed typical morphology, expressed markers of the undifferentiated state, was able to differentiate into the three germ layers in vitro and displayed a normal karyotype. When paired with its isogenic counterpart, this line represents a valuable resource to model the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scr.2024.103564 | DOI Listing |
FEBS Lett
December 2024
Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
The transcription-coupled repair (TCR) pathway resolves transcription-blocking DNA lesions to maintain cellular function and prevent transcriptional arrest. Stalled RNA polymerase II (RNAPII) triggers repair mechanisms, including RNAPII ubiquitination, which recruit UVSSA and TFIIH. Defects in TCR-associated genes cause disorders like Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and recently defined AMeDS.
View Article and Find Full Text PDFPhotodermatol Photoimmunol Photomed
January 2025
Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan.
Per Med
December 2024
Hanoi Medical University, Hanoi city, Vietnam.
Xeroderma pigmentosum (XP) disorder is recognized as a genetic condition inherited by autosomal recessive fashion. XP results from a defective DNA repair mechanism that significantly increases skin cancer risk. Fifteen Vietnamese patients were investigated with typical clinical manifestations of XP.
View Article and Find Full Text PDFCerebellum
December 2024
Division for Neurodegenerative Diseases, Department of Neurology, Universitaetsmedizin Mannheim, University of Heidelberg, Mannheim, Germany.
Genetic alterations in the ERCC4 gene typically cause Xeroderma pigmentosum and other nucleotide excision repair disorders. Neurologic symptoms are present in some of these patients. In rare cases, ERCC4-mutations can manifest with prominent neurologic symptoms.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2024
Tufts University, Department of Biomedical Engineering, 4 Colby Street, Medford, 02155, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!