The proteasomal system is becoming a target for the treatment of several diseases, especially in cancer therapy. The present study aims to develop a novel copper complex that inhibits the proteasome in skin squamous cell carcinoma. New molecules based on the copper complex were synthesized for the first time to assess their potential as proteasome inhibitors, specifically targeting squamous cell carcinoma induced by 7,12-dimethylbenz(a)anthracene (DMBA) in mouse models. Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and energy dispersive X-ray analysis (EDX) were carried out to characterize this new copper complex. Notably, the presence of a papilloma (skin tumor) was confirmed by histopathological analysis. Subsequent investigation included the quantification of proteasome levels using a sandwich ELISA test, and the catalytic activity of the 20S proteasome was determined by measuring the fluorescence emitted after the cleavage of 7-amino-4-methylcoumarin (AMC). Hence, X-ray crystallography indicates that all Cu atoms are five-coordinated in a square-pyramidal configuration and biological activity of copper Schiff base complex, which exhibits high proteasome inhibitory activities with particular selectivity of β5 subunit. The pharmacokinetic properties (ADMET) of the copper complex named Cu(L1) showed encouraging results with very low toxicity, distribution, and absorption. Structure-activity relationship (SAR) information obtained from Cu(L1) demonstrated its selectivity and potent inhibition for β5 subunit. In this regard, this copper complex has emerged as a novel therapy for skin cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2024.127533 | DOI Listing |
Chemistry
January 2025
Shihezi University, School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, North 4th Road, 832003, Shihezi, CHINA.
An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute of Building Materials Research, RWTH Aachen University, Schinkelstraße 3, 52062, Aachen, Germany. Electronic address:
Many construction products are in contact with, e.g., rain and seepage water during their service life.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
Atom transfer radical polymerization (ATRP) is a leading method for creating polymers with precise control over molecular weight, yet its reliance on metal catalysts limits its application in metal-sensitive and environmental contexts. Addressing these limitations, we have developed a recyclable, biocompatible, robust, and tunable ATRP catalyst composed of a protein-polymer-copper conjugate, synthesized by polymerizing an -proline-based monomer onto bovine serum albumin and complexing with Cu(II). The use of this conjugate catalyst maintains ATRP's precision while ensuring biocompatibility with both and HEK 293 cells, and its high molecular weight allows for easy recycling through dialysis.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
Copper compounds with artificial metallo-nuclease (AMN) activity are mechanistically unique compared to established metallodrugs. Here, we describe the development of a new dinuclear copper AMN, Cu2-BPL-C6 (BPL-C6 = bis-1,10-phenanthroline-carbon-6), prepared using click chemistry that demonstrates site-specific DNA recognition with low micromolar cleavage activity. The BPL-C6 ligand was designed to force two redox-active copper centres-central for enhancing AMN activity-to bind DNA, via two phenanthroline ligands separated by an aliphatic linker.
View Article and Find Full Text PDFPlant Cell
December 2024
Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA.
Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!