A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metal-phenolic network crosslinked nanogel with prolonged biofilm retention for dihydroartemisinin/NIR synergistically enhanced chemodynamic therapy. | LitMetric

Chemodynamic therapy (CDT) is emerging as a promising treatment for biofilm infections. However, its effectiveness is significantly hindered by several factors: the body's stable temperature, a limited supply of Fe ions, and inadequate endogenous levels of HO at the infection sites. Herin, our study introduces MPN-crosslinked hyaluronic acid (HA) nanogels as an effective strategy for treating biofilm-associated infections. The DHA@HA-TA/Fe (DHTF) nanogel is synthesized through the coordination reaction between Fe ions and tannic acid (TA)-modified HA, with dihydroartemisinin (DHA) encapsulated within the structure. DHTF exhibits pH-/hyaluronidase-responsiveness in the biofilm infection microenvironment, enabling sustained release of DHA as a substitute for HO and Fe for CDT. The incorporation of Fe/TA-based MPN and DHA within the nanogels enables photothermal/DHA dually-enhanced CDT, facilitating efficient disruption of biofilm matrices and bacterial eradication through boosting reactive oxygen species production. In vivo studies demonstrate that DHTF exhibit prolonged retention within biofilms. This ensures a sustained release of therapeutic agents and continuous anti-biofilm activity. Eventually, both in vitro and in vivo evaluations consistently confirm the significant anti-biofilm capacity of DHTF. Our findings highlight the potential of DHTF as a promising nanomedicine for biofilm-related infections, offering efficient treatment strategies that could improve clinical management of these challenging conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.09.168DOI Listing

Publication Analysis

Top Keywords

chemodynamic therapy
8
sustained release
8
dhtf
5
metal-phenolic network
4
network crosslinked
4
crosslinked nanogel
4
nanogel prolonged
4
biofilm
4
prolonged biofilm
4
biofilm retention
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!