CCCH-type tandem zinc finger (TZF) motifs are found in many RNA-binding proteins involved in regulating mRNA stability, translation, and splicing. In , several RNA-binding proteins that regulate embryonic development and cell fate determination contain CCCH TZF domains, including POS-1. Previous biochemical studies have shown that despite high levels of sequence conservation, POS-1 recognizes a broader set of RNA sequences compared to the human homologue tristetraprolin. However, the molecular basis of these differences remains unknown. In this study, we refined the consensus RNA sequence and determined the differing binding specificities of the two zinc fingers of POS-1. We also determined the solution structure and characterized the internal dynamics of the TZF domain of POS-1. From the structure, we identified unique features that define the RNA binding specificity of POS-1. We also observed that the TZF domain of POS-1 is in equilibrium between interconverting conformations. Transitions between these conformations require internal motions involving many residues with correlated dynamics in each ZF. We propose that the correlated dynamics are necessary to allow allosteric communication between the nucleotide-binding pockets observed in the N-terminal ZF. Our study shows that both the structure and conformational plasticity of POS-1 are important in ensuring recognition of its RNA binding targets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.4c00259DOI Listing

Publication Analysis

Top Keywords

domain pos-1
12
rna binding
12
ccch-type tandem
8
tandem zinc
8
zinc finger
8
pos-1
8
binding specificity
8
rna-binding proteins
8
tzf domain
8
correlated dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!