Enzymes play a pivotal role in the human body, but their potential is not limited to just that. Scientists have successfully modified these enzymes as nanobiocatalysts or nanozymes for industrial or commercial use, either in the food, medicine, biotech or even textile industries. These nanobiocatalysts and nanozymes offer several advantages over enzymes, like better stability, improved shelf-life, increased percentage yield, and reuse potential, which is very difficult with normal enzymes. The various techniques of NBC synthesis using immobilization techniques like adsorption, covalent binding, affinity immobilization, and entrapment methods are briefly discussed. The enzymes are either entrapped or adsorbed on the nanocarrier matrices, which can be nanofibers, nanoporous carriers, or nanocontainers as nanobiocatalysts. We also highlight the challenges the nanobiocatalyst overcomes in the industrial production of some drugs like sitagliptin, montelukast, pregabalin, and atorvastatin. Also, the inactivation of an organophosphate or opioid poisoning treating agent, SSOPOX nanohybrid, is discussed in this paper. Nanozymes are intrinsic enzyme-like compounds, and they also show wide application in themselves. Their GQD/AGNP nanohybrid shows antibacterial potential; they can also be utilized in optical sensing to detect small molecules, ions, nucleic acids, proteins, and cancer cells. In this paper, various applications of these NBCs have been discussed, and their potential applications with examples are also mentioned. Nanoenzymes can address targeted drug delivery via the controlled release of drugs to increase the efficacy of anticancer drugs that minimize damage to healthy tissue or cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2024051171 | DOI Listing |
Biosens Bioelectron
January 2025
College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China. Electronic address:
In this study, a novel organic photophotochemical transistor (OPECT) biosensing platform was proposed for dual-mode detection of CEA. The dual-mode detecting system is achieved benefit from the exceptional photoelectric performance of MIL-53(Fe) -NH@ZnInS (MNZ) and the peroxidase enzyme (POD) activity of ZIF-67/CuCoO (ZIF-67/CuCoO). Ab2- ZIF-67/CuCoO probe was immobilized on a 96-well plate by enzyme-linked immunosorbent assay, which accelerated the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by hydrogen peroxide and thus successfully realized visual detection of CEA.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
September 2024
Associate Professor of Pharmaceutics, Faculty of Health and Allied Sciences, Amity University Noida India, Pharmaceutics Domain, Uttar Pradesh, India; Member, Indian National Young Academy of Sciences (INYAS), INSA, New Delhi, India.
Enzymes play a pivotal role in the human body, but their potential is not limited to just that. Scientists have successfully modified these enzymes as nanobiocatalysts or nanozymes for industrial or commercial use, either in the food, medicine, biotech or even textile industries. These nanobiocatalysts and nanozymes offer several advantages over enzymes, like better stability, improved shelf-life, increased percentage yield, and reuse potential, which is very difficult with normal enzymes.
View Article and Find Full Text PDFFood Chem
November 2024
Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran. Electronic address:
The escalating oxidative stress has heightened the daily human demand for diverse antioxidants. Therefore, development of the novel approaches to assess the total antioxidant capacity (TAC) of various nutrients is essential. In this study, drawing inspiration from the active site of native peroxidase enzymes, a novel peroxidase (POD)-like nanozyme was developed based on the cobalt ferrite (CoFeO) nanoparticles functionalized with different catalytic amino acids.
View Article and Find Full Text PDFTop Catal
December 2022
64849 Monterrey, Mexico School of Engineering and Sciences, Tecnologico de Monterrey.
Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
Chemoenzymatic catalysis combining the traits of chemical and enzymatic catalysis provides tremendous possibilities for the design of biosynthetic pathways utilizing inorganic catalysts and enzymes. However, the efficiency of chemoenzymatic catalysis is usually governed by the synergy and compatibility of the two catalysts. Here, we report for the first time the catalase-like activity of cobalt phosphate nanocrystals (CoPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!