Brassinosteroid signaling is essential for plant growth as exemplified by the dwarf phenotype of loss-of-function mutants in (), a ubiquitously expressed Arabidopsis brassinosteroid receptor gene. Complementation of brassinosteroid-blind receptor mutants by expression with various tissue-specific promoters implied that local brassinosteroid signaling may instruct growth non-cell autonomously. Here, we performed such rescues with a panel of receptor variants and promoters, in combination with tissue-specific transgene knockouts. Our experiments demonstrate that brassinosteroid receptor expression in several tissues is necessary but not sufficient for rescue. Moreover, complementation with tissue-specific promoters requires the genuine gene body sequence, which confers ubiquitous expression of trace receptor amounts that are sufficient to promote brassinosteroid-dependent root growth. Our data, therefore, argue for a largely cell-autonomous action of brassinosteroid receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423886 | PMC |
http://dx.doi.org/10.1126/sciadv.adq3352 | DOI Listing |
Front Plant Sci
December 2024
Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.
KAR (Karrikin), a novel plant growth regulator, can be recognized specifically by plants and can activate resistance responses. MdKAI2 is the natural receptor of KARs in apple. Here, we report the identification of osmotic stress resistance in via the method of genetic transformation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
Rice ( L.) feeds half the world's population and serves as one of the most vital staple food crops globally. The brown planthopper (BPH, Stål), a major piercing-sucking herbivore specific to rice, accounts for large yield losses annually in rice-growing areas.
View Article and Find Full Text PDFPlant Sci
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
BMC Genomics
December 2024
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Plant J
December 2024
Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 24, chemin de Borde Rouge, Auzeville-Tolosane, 31320, France.
Calcium signaling plays an essential role in integrating plant responses to diverse stimuli and regulating growth and development. While some signaling components and their roles are well-established, such as the ubiquitous calmodulin (CaM) sensor, plants possess a broader repertoire of calcium sensors. Notably, CaM-like proteins (CMLs) represent a poorly characterized class for which interacting partners and biological functions remain largely elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!