A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The transcription factor CAMTA2 interacts with the histone acetyltransferase GCN5 and regulates grain weight in wheat. | LitMetric

The transcription factor CAMTA2 interacts with the histone acetyltransferase GCN5 and regulates grain weight in wheat.

Plant Cell

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.

Published: September 2024

AI Article Synopsis

  • GCN5 is a histone acetyltransferase that interacts with CAMTA2 to regulate wheat grain size and weight through the activation of starch biosynthesis genes.
  • gcn5 mutant grains are smaller and have less starch, while camta2 mutants show similar grain size reductions.
  • The study also identifies a CAMTA2-AH3 elite allele associated with increased grain size, suggesting a potential target for breeding improved wheat varieties.

Article Abstract

Grain weight and size are major traits targeted in breeding to improve wheat (Triticum aestivum L.) yield. Here, we find that the histone acetyltransferase GENERAL CONTROL NONDEREPRESSIBLE 5 (GCN5) physically interacts with the calmodulin-binding transcription factor CAMTA2 and regulates wheat grain size and weight. gcn5 mutant grains were smaller and contained less starch. GCN5 promoted the expression of the starch biosynthesis genes SUCROSE SYNTHASE 2 (Sus2) and STARCH-BRANCHING ENZYME Ic (SBEIc) by regulating H3K9ac and H3K14ac levels in their promoters. Moreover, immunoprecipitation followed by mass spectrometry (IP-MS) revealed that CAMTA2 physically interacts with GCN5. The CAMTA2-GCN5 complex activated Sus2 and SBEIc by directly binding to their promoters and depositing H3K9ac and H3K14ac marks during wheat endosperm development. camta2 knockout mutants exhibited similar phenotypes to gcn5 mutants, including smaller grains that contained less starch. In gcn5 mutants, transcripts of high molecular weight (HMW) Glutenin (Glu) genes were downregulated, leading to reduced HMW glutenin protein levels, gluten content, and sodium dodecyl sulfate (SDS) sedimentation volume. However, the association of GCN5 with Glu genes was independent of CAMTA2, since GCN5 enrichment on Glu promoters was unchanged in camta2 knockouts. Finally, we identified a CAMTA2-AH3 elite allele that corresponded with enhanced grain size and weight, serving as a candidate gene for breeding wheat varieties with improved grain weight.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638106PMC
http://dx.doi.org/10.1093/plcell/koae261DOI Listing

Publication Analysis

Top Keywords

grain weight
12
gcn5
9
transcription factor
8
factor camta2
8
histone acetyltransferase
8
wheat grain
8
physically interacts
8
grain size
8
size weight
8
contained starch
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!