Purpose: Claudin 18.2 (CLDN18.2) is a surface membrane protein that is crucial for maintaining tight junctions in gastric mucosal cells and is highly expressed in gastric, esophageal, and pancreatic cancers. Thus, CLDN18.2 is suited for exploration as a clinical target for chimeric antigen receptor T-cell (CAR-T) therapy in these indications. Although CAR-T therapies show promise, a challenge faced in their development for solid tumors is the immunosuppressive tumor microenvironment, which is often characterized by the presence of immune and stromal cells secreting high levels of TGFβ. The addition of TGFβ armoring can potentially expand CAR-T activity in solid tumors. We report on the preclinical development of a CLDN18.2-targeting CAR-T therapy showing effectiveness in patient models with CLDN18.2-positive gastric, esophageal, and pancreatic tumors.
Experimental Design: The lead lentivirus product contains a unique single-chain variable fragment; CD28 and CD3z costimulatory and signaling domains; and dominant-negative TGF-β receptor armoring, enhancing targeting and safety and counteracting suppression. We developed a shortened cell manufacturing process to enhance the potency of the final product AZD6422.
Results: AZD6422 exhibited significant antitumor activity and tolerability in multiple patient-derived tumor xenograft models with various CLDN18.2 and TGF-β levels, as determined by IHC. The efficacy of armored CAR-T cells in tumor models with elevated TGFβ was increased in vitro and in vivo. In vitro restimulation assays established greater persistence and cytolytic function of AZD6422 compared with a traditionally manufactured CAR-T.
Conclusions: AZD6422 was safe and efficacious in patient-derived, CLDN18.2-positive murine models of gastrointestinal cancers. Our data support further clinical development of AZD6422 for patients with these cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609629 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-24-1853 | DOI Listing |
Bio Protoc
January 2025
Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.
View Article and Find Full Text PDFJ Adv Pract Oncol
November 2024
H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
Follicular lymphoma (FL) is a disease often characterized by chronic and successive relapses after first-line chemoimmunotherapy. Although chemoimmunotherapy and combination therapy, such as lenalidomide with rituximab, are well established in the treatment sequence of FL, there is a need to streamline treatment options and determine placement of novel agents, such as chimeric antigen receptor T-cell therapy, an enhancer of zeste homolog 2 inhibitor, or a phosphoinositide 3 kinase inhibitor, into the treatment landscape. As such, the purpose of this review is to compare the safety profiles of approved agents in subsequent lines of therapy for relapsed or refractory FL and to assess how the management of adverse events may impact treatment choice.
View Article and Find Full Text PDFImmune Netw
December 2024
Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
Chimeric antigen receptor-transduced T (CAR-T) cell therapy is an effective cell therapy against advanced hematological tumors. However, the use of autologous T cells limits its timely and universal generation. Allogeneic CAR-T cell therapy may be a good alternative as a ready-to-use therapeutic.
View Article and Find Full Text PDFFuture Oncol
January 2025
cKite, a Gilead Company, Santa Monica, CA, USA.
J Immunother Cancer
January 2025
Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
The ability of immune cells to expand numerically after infusion distinguishes adoptive immunotherapies from traditional drugs, providing unique therapeutic advantages as well as the potential for unmanageable toxicities. Here, we describe a case of lethal hyperleukocytosis in a patient with neuroblastoma treated on phase 1 clinical trial (NCT03294954) with autologous natural killer T cells (NKTs) expressing a GD2-specific chimeric antigen receptor and cytokine interleukin 15 (GD2-CAR.15).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!