Computation of Magnetic Exchange Couplings in Photoexcited Systems Based on KS-DFT.

J Phys Chem Lett

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.

Published: October 2024

Many efforts have been made in the study of optically excited spin-coupled molecules due to their appealing features for quantum information sciences. However, the characterization of the magnetic exchange couplings occurring from the photoexcitation is challenging experimentally. In this context, theoretical determinations play a critical role and must provide evaluations with rigorous and cost-effective strategies. This work presents a new approach to compute magnetic exchange couplings in photoexcited systems based on the recently generalized decomposition/recomposition method (David et al., 2024, 6, 8952-8964). This corresponds to the first application of KS-DFT in this context and offers both a completely general method and a powerful rationalization tool. This strategy is applied to mono- and biradical-based molecules recently synthesized by Kirk and co-workers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c02074DOI Listing

Publication Analysis

Top Keywords

magnetic exchange
12
exchange couplings
12
couplings photoexcited
8
photoexcited systems
8
systems based
8
computation magnetic
4
based ks-dft
4
ks-dft efforts
4
efforts study
4
study optically
4

Similar Publications

Magnetic field-dependent magnetization of highly crystalline FeO magnetic nanoparticles has been carried out to understand surface canting structures at low and room temperatures. The exchange bias () values of ∼18 to 27 Oe at 300 K for three samples prepared from different precursors are observed; and a decrease in value is obtained when the samples are measured at 5 K. However, with a decrease in temperature, coercivity () increases.

View Article and Find Full Text PDF

Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.

View Article and Find Full Text PDF

Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.

View Article and Find Full Text PDF

Verdazyl radical polymers for advanced organic spintronics.

Nat Commun

January 2025

Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.

Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges.

View Article and Find Full Text PDF

Amide proton transfer-weighted (APTw) imaging and derived quantitative metrics in evaluating gliomas: Improved performance compared to magnetization transfer ratio asymmetry (MTR).

Acad Radiol

January 2025

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.Z., Y.L., Y.L., Y.D., N.S., Y.X., S.Y., Y.F., J.Z., D.L., L.L., W.Z.). Electronic address:

Rationale And Objectives: Isocitrate dehydrogenase (IDH) status, glioma subtypes and tumor proliferation are important for glioma evaluation. We comprehensively compare the diagnostic performance of amide proton transfer-weighted (APTw) MRI and its related metrics in glioma diagnosis, in the context of the latest classification.

Materials And Methods: Totally 110 patients with adult-type diffuse gliomas underwent APTw imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!