The dynamic behavior of impacting droplet shearing by the surface edge with different wettabilities is complicated and has great significance for engineering application. The morphological evolution of droplet with various Weber numbers () and wettability impacting on the edge of square substrate is investigated by high-speed photography. Moreover, the effects of the contact angle (α) and Weber numbers () on the shear breaking process of droplets are obtained. There are three types morphological evolution of impacting droplet are observed experimentally, including unbroken, tensile breakup, and shear breakup. Contact angle and Weber number have been proved to be the significant factors affecting the type of droplet morphological evolution. Meanwhile, the critical Weber number of different types are obtained quantitatively. Moreover, as α increases, the critical Weber numbers for breakup increase. In the shear breakup process, the mass ratio between the droplets remaining on the substrate and the initial droplets is maintained at 50%. Particularly, a reliable prediction model for the spreading of droplet impacting the side wall is proposed and compared with the experimental data. Overall, this study provides new direction and guidance for exploring droplet breakup kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c02253 | DOI Listing |
Biochem Biophys Res Commun
December 2024
Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan.
Lipid rafts are subdomains of the cell membrane that are rich in cholesterol and glycolipids, and they are involved in various cellular processes and pathophysiological mechanisms. However, the specific role of lipid rafts in hepatocyte dysfunction during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is not fully understood. In this study, we investigated the impact of lipid rafts on insulin sensitivity and hepatocyte injury induced by saturated free fatty acids (sFFAs) using primary-cultured mouse hepatocytes.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.
Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.
Osteoarthritis Cartilage
December 2024
Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:
Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis (OA). Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
In nature, engineering technology and daily life, wetting phenomena are widespread and have essential roles and significance. Bionics is becoming increasingly important nowadays and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting process and heat and mass transfer characteristics is becoming more meaningful. In this paper, based on photolithography technology, SU-8 photoresist was used as raw material to prepare biomimetic surfaces with microstructures in various arrangements.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2024
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
Purpose: This study investigates the impact of various mixing parameters and surfactant combinations on the physical characteristics of nanoemulsions produced using high-speed homogenization. Nanoemulsions are explored for their capacity to enhance transdermal drug delivery in pharmaceutical and cosmetic contexts.
Methods: Employing a standard high-speed homogenizer typical in the cosmetic industry, we tested different combinations of Polysorbate (Tween®) and Sorbitan ester (Span®) surfactants under single and intermittent process configurations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!