Gulf War Illness (GWI) afflicts US military personnel who served in the Persian Gulf War. Suspect causal agents include exposure to pyridostigmine (PB), permethrin (PM) and ,-diethyl-m-toluamide (DEET). Prominent symptoms include cognitive deficits, such as memory impairment. In aging animal models, we have documented the beneficial effect of the flavanol (-)-epicatechin (Epi) on hippocampus structure and related function. Using a rat model of GWI, we examined the effects of Epi on hippocampus inflammation, oxidative stress, mitochondrial dysfunction, cell death/survival pathways, and memory endpoints. Male Wistar rats underwent 3 weeks of exposure to either vehicles or DEET, PM, PB, and stress. Subgroups of GWI rats were then allocated to receive orally 15 days of either water (vehicle) or 1 mg/kg/day of Epi treatment. Object recognition tasks were performed to assess memory. Hippocampus samples were analyzed. Epi treatment yields significant improvements in short- and long-term memory versus GWI rats. Hippocampus oxidative stress and pro-inflammatory cytokine levels showed significant increases with GWI that were largely normalized with Epi becoming comparable to controls. Significant increases in markers of hippocampus neuroinflammation and cell death were noted with GWI and were also largely reduced with Epi. Neuronal survival signaling pathways were adversely impacted by GWI and were partially or fully restored by Epi. Markers of mitochondrial function were adversely impacted by GWI and were fully restored by Epi. In conclusion, in an animal model of GWI, Epi beneficially impacts recognized markers of hippocampus neuroinflammation, oxidative stress, cell survival, neurotoxicity and mitochondrial function leading to improved memory.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jmf.2023.0200DOI Listing

Publication Analysis

Top Keywords

gulf war
12
oxidative stress
12
gwi
9
epi
9
war illness
8
epi hippocampus
8
model gwi
8
gwi rats
8
epi treatment
8
markers hippocampus
8

Similar Publications

Head trauma from blast exposure is a growing health concern, particularly among active military personnel, and is considered the signature injury of the Gulf War. However, it remains elusive whether fundamental differences exist between blast-related traumatic brain injuries (TBI) and TBI due to other mechanisms. Considering the importance of lipid metabolism associated with neuronal membrane integrity and its compromise during TBI, we sought to find changes in lipidomic profiling during blast or blunt (Stereotaxically Controlled Contusison-SCC)-mediated TBI.

View Article and Find Full Text PDF

Background: Gulf War Illness (GWI) is a chronic multi-symptom illness that affects up to one-third of the 700,000 American military personnel deployed to the Persian Gulf region in 1990 and 1991. We conducted a randomized controlled trial to examine feasibility and the relative efficacy of two 12-week in-person group treatments (Tai Chi and Wellness) to address GWI symptoms of chronic pain, fatigue, and changes in mood and cognitive functioning.

Method: Male and female veterans were randomly assigned to Tai Chi (n = 27) or Wellness (n = 26) group interventions and assessed at four time points: baseline, post-treatment, 3-, and 9-month follow-up.

View Article and Find Full Text PDF

Gulf war illness is a chronic multisymptom disorder that affects as many as many as 25-35% of the military personnel who were sent to the Persian Gulf war in 1991. The illness has many debilitating symptoms, including cognitive problems, gastrointestinal symptoms, and musculoskeletal pain. Those so afflicted have been sick for more than 30 years and, therefore, it has become imperative to understand the etiology and then produce treatments to ease the symptoms.

View Article and Find Full Text PDF

The current state-of-the-art climate models when combined together suggest that the anthropogenic weakening of the Atlantic Meridional Overturning Circulation (AMOC) has already begun since the mid-1980s. However, continuous direct observational records during the past two decades have shown remarkable resilience of the AMOC. To shed light on this apparent contradiction, here we attempt to attribute the interdecadal variation of the historical AMOC to the anthropogenic and natural signals, by analyzing multiple climate and surface-forced ocean model simulations together with direct observational data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!