Irreversible electroporation (IRE) is a minimally thermal tissue ablation modality used to treat solid tumors adjacent to critical structures. Widespread clinical adoption of IRE has been limited due to complicated anesthetic management requirements and technical demands associated with placing multiple needle electrodes in anatomically challenging environments. High-frequency irreversible electroporation (H-FIRE) delivered using a novel single-insertion bipolar probe system could potentially overcome these limitations, but ablation volumes have remained small using this approach. While H-FIRE is minimally thermal in mode of action, high voltages or multiple pulse trains can lead to unwanted Joule heating. In this work, we improve the H-FIRE waveform design to increase the safe operating voltage using a single-insertion bipolar probe before electrical arcing occurs. By uniformly increasing interphase ( d) and interpulse ( d) delays, we achieved higher maximum operating voltages for all pulse lengths. Additionally, increasing pulse length led to higher operating voltages up to a certain delay length ( ∼ 25 μs), after which shorter pulses enabled higher voltages. We then delivered novel H-FIRE waveforms via an actively cooled single-insertion bipolar probe in swine liver in vivo to determine the upper limits to ablation volume possible using a single-needle H-FIRE device. Ablations up to 4.62 ± 0.12cm x 1.83 ± 0.05cm were generated in 5 minutes without a requirement for cardiac synchronization during treatment. Ablations were minimally thermal, easily visualized with ultrasound, and stimulated an immune response 24 hours post H-FIRE delivery. These data suggest H-FIRE can rapidly produce clinically relevant, minimally thermal ablations with a more user-friendly electrode design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2024.3468159 | DOI Listing |
Sensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy.
Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Central South University, Changsha 410075, China.
Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.
View Article and Find Full Text PDFMolecules
January 2025
FEQx Lab, Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain.
Polyphenolic compounds are key elements in sectors such as pharmaceutics, cosmetics and food; thus, their physicochemical characterization is a vital task. In this work, the thermal behavior of seven polyphenols (-resveratrol, -polydatin, kaempferol, quercetin, myricetin, hesperidin, and (-)-epicatechin) was investigated with DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis). Melting temperatures, enthalpies of fusion and decomposition temperatures were determined, and heat capacities were measured in the temperature range from 283.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:
The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.
The global increase in urolithiasis prevalence has led to a shift towards minimally invasive procedures, such as retrograde intrarenal surgery, supported by advancements in laser technologies for lithotripsy. Pulsed lasers, particularly the holmium YAG and the newer thulium fiber laser, have significantly transformed the management of upper urinary tract stones. However, the use of high-power lasers in these procedures introduces risks of heat-related injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!