The rapid growth of cloud computing has led to the widespread adoption of heterogeneous virtualized environments, offering scalable and flexible resources to meet diverse user demands. However, the increasing complexity and variability in workload characteristics pose significant challenges in optimizing energy consumption. Many scheduling algorithms have been suggested to address this. Therefore, a self-attention-based progressive generative adversarial network optimized with Dwarf Mongoose algorithm adopted Energy and Deadline Aware Scheduling in heterogeneous virtualized cloud computing (SAPGAN-DMA-DAS-HVCC) is proposed in this paper. Here, a self-attention based progressive generative adversarial network (SAPGAN) is proposed to schedule activities in a cloud environment with an objective function of makespan and energy consumption. Then Dwarf Mongoose algorithm is proposed to optimize the weight parameters of SAPGAN. Outcome of proposed approach SAPGAN-DMA-DAS-HVCC contains 32.77%, 34.83% and 35.76% higher right skewed makespan, 31.52%, 33.28% and 29.14% lower cost when analysed to the existing models, like task scheduling in heterogeneous cloud environment utilizing mean grey wolf optimization approach, energy and performance-efficient task scheduling in heterogeneous virtualized Energy and Performance Efficient Task Scheduling Algorithm, energy and make span aware scheduling of deadline sensitive tasks on the cloud environment, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0954898X.2024.2391401DOI Listing

Publication Analysis

Top Keywords

cloud computing
12
progressive generative
12
generative adversarial
12
adversarial network
12
heterogeneous virtualized
12
scheduling heterogeneous
12
cloud environment
12
task scheduling
12
virtualized cloud
8
energy consumption
8

Similar Publications

In response to the demand for advanced tools in environmental monitoring and policy formulation, this work leverages modern software and big data technologies to enhance novel road transport emissions research. This is achieved by making data and analysis tools more widely available and customisable so users can tailor outputs to their requirements. Through the novel combination of vehicle emissions remote sensing and cloud computing methodologies, these developments aim to reduce the barriers to understanding real-driving emissions (RDE) across urban environments.

View Article and Find Full Text PDF

Most current research in cloud forensics is focused on tackling the challenges encountered by forensic investigators in identifying and recovering artifacts from cloud devices. These challenges arise from the diverse array of cloud service providers as each has its distinct rules, guidelines, and requirements. This research proposes an investigation technique for identifying and locating data remnants in two main stages: artefact collection and evidence identification.

View Article and Find Full Text PDF

Securing Cloud-Based Internet of Things: Challenges and Mitigations.

Sensors (Basel)

December 2024

Department of Computer Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

The Internet of Things (IoT) has seen remarkable advancements in recent years, leading to a paradigm shift in the digital landscape. However, these technological strides have introduced new challenges, particularly in cybersecurity. IoT devices, inherently connected to the internet, are susceptible to various forms of attacks.

View Article and Find Full Text PDF

Objective: In recent years, wearable devices such as smartwatches and smart patches have revolutionized biosignal acquisition and analysis, particularly for monitoring electrocardiography (ECG). However, the limited power supply of these devices often precludes real-time data analysis on the patch itself.

Approach: This paper introduces a novel Python package, tinyHLS (High Level Synthesis), designed to address these challenges by converting Python-based AI models into platform-independent hardware description language (HDL) code accelerators.

View Article and Find Full Text PDF

Lightweight container technology has emerged as a fundamental component of cloud-native computing, with the deployment of containers and the balancing of loads on virtual machines representing significant challenges. This paper presents an optimization strategy for container deployment that consists of two stages: coarse-grained and fine-grained load balancing. In the initial stage, a greedy algorithm is employed for coarse-grained deployment, facilitating the distribution of container services across virtual machines in a balanced manner based on resource requests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!