Bile acid-induced hepatotoxicity is inevitable in Cholestasis pathogenesis and L-Glutamine (L-Gln) has been reported to prevent total parenteral nutrition (TPN)-induced cholestasis in premature neonates. While mechanisms remain unknown, we hypothesize that bile acids impair growth factor (GF) function in hepatocytes which L-glutamine prevents through NAPDH oxidase (NOX) modulation. Glycochenodeoxycholic acid (GCDC, 0-100 µM) when added to primary hepatocyte cultures significantly (p < 0.01) decreased the FBS-induced BrdU incorporation, however inhibition of Fibroblast Growth factor (FGF)- or Hepatocyte growth factor (HGF)-induced DNA synthesis was more pronounced (p < 0.001). L-Gln markedly attenuated GCDC-mediated inhibition of DNA synthesis in both FBS and GF-treated cells. GCDC significantly increased the NADPH oxidase activity and NOX-1 protein expression that were markedly reduced by L-Gln and protein kinase c (PKC) inhibitor, LY-333531. Apocynin (APCN) and diphenyliodonium (DPI) significantly blocked the GCDC-mediated inhibition of GF-induced DNA synthesis. This study demonstrates that bile acid-induced hepatotoxicity involves dysfunction of certain growth factors via protein kinase c (PKC)- mediated NOX modulation which can be corrected, at least partly, by L-glutamine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08977194.2024.2407566 | DOI Listing |
Acta Pharmacol Sin
January 2025
Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.
Glutamine synthetase (GS) plays a crucial role in the homeostasis of the glutamate-glutamine cycle in the brain. Hypoactive GS causes depressive behaviors. Under chronic stress, GS has no change in expression, but its activity is decreased due to nitration of tyrosine (Tyr).
View Article and Find Full Text PDFSci Signal
December 2024
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
Bile acids (BAs) affect the growth of potentially pathogenic commensals, including those from the Enterobacteriaceae family, which are frequently overrepresented in inflammatory bowel disease (IBD). BAs are normally reabsorbed in the ileum for recycling and are often increased in the colonic lumina of patients with IBD, including those with Crohn's disease (CD). Here, we investigated the influence of BAs on gut colonization by Enterobacteriaceae.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany.
Inflammation-induced cholestasis is a common problem in septic patients and results from cytokine-mediated inhibition of bile acid export including impaired expression of the bile salt export pump (BSEP) with a consecutive increase in intracellular bile acids mediating cell damage. The present study focuses on the mechanisms by which interleukin 1 β (IL-1β), as a critical mediator of sepsis-induced cholestasis, controls the expression of BSEP in hepatocytes. Notably, the treatment of hepatocytes with IL-1β leads to the upregulation of a broad chemokine pattern.
View Article and Find Full Text PDFFood Res Int
January 2025
School of Life Sciences, Yantai University, Yantai, China; Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China. Electronic address:
Gut dysbiosis is a characteristic feature of obesity and targeting gut microbiota presents a promising approach to attenuate obesity. Euglena gracilis polysaccharide (EGP) has emerged as a potential prebiotic capable of promoting health-beneficial bacteria. However, its effects on the gut dysbiosis of obese individuals remain unclear.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland.
Adults and children with cholestatic liver disease are at risk for type C hepatic encephalopathy (HE) and may present lifelong neurocognitive impairment. While the underlying cellular and molecular mechanisms are still incompletely understood, ammonium and bile acids (BAs) seem to play a key role in this pathology, by crossing the blood-brain-barrier and modifying neuronal homeostasis and synaptic plasticity. This experimental study aimed to investigate the effects of ammonium and BAs on dendritic spines of rat hippocampal CA1 neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!