AI Article Synopsis

  • The study provides an overview of deep learning algorithms (DLAs) used for automated Cobb angle estimation from X-rays, assessing their limitations and potential improvements.
  • A systematic literature review yielded 120 articles, narrowing down to 50 for the review and 17 for meta-analysis, which revealed a circular mean absolute error (CMAE) of 2.99, with segmentation-based methods demonstrating higher accuracy (CMAE of 2.40) compared to landmark-based methods (CMAE of 3.31).
  • The findings suggest that while DLAs can accurately measure Cobb angles, there’s room for enhancing model design, and adherence to quality guidelines in reporting is crucial for future research.

Article Abstract

Purpose: This study aims to provide an overview of different deep learning algorithms (DLAs), identify the limitations, and summarize potential solutions to improve the performance of DLAs.

Methods: We reviewed eligible studies on DLAs for automated Cobb angle estimation on X-rays and conducted a meta-analysis. A systematic literature search was conducted in six databases up until September 2023. Our meta-analysis included an evaluation of reported circular mean absolute error (CMAE) from the studies, as well as a subgroup analysis of implementation strategies. Risk of bias was assessed using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). This study was registered in PROSPERO prior to initiation (CRD42023403057).

Results: We identified 120 articles from our systematic search (n = 3022), eventually including 50 studies in the systematic review and 17 studies in the meta-analysis. The overall estimate for CMAE was 2.99 (95% CI 2.61-3.38), with high heterogeneity (94%, p < 0.01). Segmentation-based methods showed greater accuracy (p < 0.01), with a CMAE of 2.40 (95% CI 1.85-2.95), compared to landmark-based methods, which had a CMAE of 3.31 (95% CI 2.89-3.72).

Conclusions: According to our limited meta-analysis results, DLAs have shown relatively high accuracy for automated Cobb angle measurement. In terms of CMAE, segmentation-based methods may perform better than landmark-based methods. We also summarized potential ways to improve model design in future studies. It is important to follow quality guidelines when reporting on DLAs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43390-024-00954-4DOI Listing

Publication Analysis

Top Keywords

deep learning
8
cobb angle
8
systematic review
8
studies
5
learning cobb
4
angle automated
4
automated measurement
4
measurement x-rays
4
systematic
4
x-rays systematic
4

Similar Publications

Predicting protein-protein interactions (PPIs) is crucial for advancing drug discovery. Despite the proposal of numerous advanced computational methods, these approaches often suffer from poor usability for biologists and lack generalization. In this study, we designed a deep learning model based on a coattention mechanism that was capable of both PPI and site prediction and used this model as the foundation for PPI-CoAttNet, a user-friendly, multifunctional web server for PPI prediction.

View Article and Find Full Text PDF

Objectives: The aims of the study are to predict lung function impairment in patients with connective tissue disease (CTD)-associated interstitial lung disease (ILD) through computed tomography (CT) quantitative analysis parameters based on CT deep learning model and density threshold method and to assess the severity of the disease in patients with CTD-ILD.

Methods: We retrospectively collected chest high-resolution CT images and pulmonary function test results from 105 patients with CTD-ILD between January 2021 and December 2023 (patients staged according to the gender-age-physiology [GAP] system), including 46 males and 59 females, with a median age of 64 years. Additionally, we selected 80 healthy controls (HCs) with matched sex and age, who showed no abnormalities in their chest high-resolution CT.

View Article and Find Full Text PDF

Deep Learning Reconstruction for Enhanced Resolution and Image Quality in Breath-Hold MRCP: A Preliminary Study.

J Comput Assist Tomogr

November 2024

From the Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Objective: This preliminary study aims to assess the image quality of enhanced-resolution deep learning reconstruction (ER-DLR) in magnetic resonance cholangiopancreatography (MRCP) and compare it with non-ER-DLR MRCP images.

Methods: Our retrospective study incorporated 34 patients diagnosed with biliary and pancreatic disorders. We obtained MRCP images using a single breath-hold MRCP on a 3T MRI system.

View Article and Find Full Text PDF

Synonymous mutations, once considered neutral, are now understood to have significant implications for a variety of diseases, particularly cancer. It is indispensable to identify these driver synonymous mutations in human cancers, yet current methods are constrained by data limitations. In this study, we initially investigate the impact of sequence-based features, including DNA shape, physicochemical properties and one-hot encoding of nucleotides, and deep learning-derived features from pre-trained chemical molecule language models based on BERT.

View Article and Find Full Text PDF

The consumption forecasting of oil and coal can help governments optimize and adjust energy strategies to ensure energy security in China. However, such forecasting is extremely challenging because it is influenced by many complex and uncertain factors. To fill this gap, we propose a hybrid deep learning approach for consumption forecasting of oil and coal in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!