Strontium-rich mineral water (strontium > 0.20 mg/L) is the second largest type of mineral water on commercial drinking water market. Exposure to high levels of strontium through drinking water or soil may interfere with calcium metabolism and increase the risk of cardiovascular and skeletal diseases, but no in-depth mechanism has been disclosed to date. Data on liver metabolic alterations in rats resulted from drinking natural high strontium mineral water (strontium 26.06 mg/L, SrHW) or tap water (filtered by activated carbon, strontium 0.49 mg/L, TW) for 3 months were obtained and analyzed with non-targeted metabolomics strategy. Compared with rats drinking TW, those drinking SrHW showed a significant change in 36 liver metabolites. Among them, 33 liver metabolites (including 14 amino acids, 6 carbohydrates, 4 short-chain fatty acids, 4 organic acids, 2 phenylpropanoic acids, 1 fatty acid, 1 peptide, and 1 bile acid) were down-regulated, and 3 (hydroxyphenyllactic acid, propionylcarnitine and S-adenosine homocysteine) were up-regulated. Metabolic pathway analysis showed that aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, and alanine, aspartate and glutamate metabolism are most impacted. Furthermore, the serum prealbumin content also significantly decreased in rats drinking SrHW. Therefore, changes in liver metabolites and serum protein levels suggested that high concentration of strontium in water was associated with decreased liver protein synthesis; changes in liver metabolites suggested that high strontium was associated with decreased lipid levels. In conclusion, high strontium in water may exert a negative effect on protein synthesis, and further study on the dose-response relationship is necessary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-024-04379-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!