AI Article Synopsis

  • A study analyzed respiratory infections in over 6,600 patients in Shijiazhuang, China, from January 2021 to December 2023, focusing on the prevalence of various pathogens during and after the COVID-19 pandemic.
  • During the pandemic years, nearly one-third of acute respiratory infections were linked to specific pathogens, with a notable increase in positivity rates following the easing of COVID-19 restrictions in 2023.
  • The most commonly identified pathogens shifted over the years, with human rhinovirus dominating in 2021, followed by mycoplasma pneumonia in 2022, and influenza A becoming the most prevalent in 2023, particularly among children under 14.

Article Abstract

Unlabelled: We aimed to investigate the epidemiological characteristics of non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) respiratory pathogens among patients with acute respiratory infections (ARIs) in Shijiazhuang, China, during the coronavirus disease 2019 (COVID-19) pandemic (January 2021--December 2022) and after the relaxation of COVID-19 restrictive measures (January 2022--December 2023). This retrospective study enrolled 6,633 ARIs patients who visited the Hebei General Hospital between 2021- and 2023. Nasopharyngeal swabs samples were collected for multiplex PCR detection of 13 common respiratory pathogens. Respiratory pathogens were detected in 31.58% of individuals diagnosed with ARIs, whileereas a co-infection with multiple pathogens was observed in 8.5% of the ARI patients. In the years 2021 and 2022, 326 (27.63%) and 283 (24.38%) respiratory pathogens were found to be positive, respectively, during the COVID-19 pandemic. However, in 2023, subsequent to the easing of COVID-19 restrictions, the positivity rate significantly rose to 34.62%, with 4,292 cases identified. The majority of positive cases over the last three3 years were concentrated in patients under 14 years old. The predominant pathogens identified were human rhinovirus (HRVs) (15.08%) in 2021, mycoplasma pneumonia (MP) (6.46%) in 2022, and influenza A virus (FluA) (11.35%) in 2023. Seasonal prevalence patterns of most pathogens were affected, except for parainfluenza virus (PIV). There was a simultaneous increase in the positive cases and positivity rates of FluA and adenovirus (ADV) Iin 2023, compared to 2021 and 2022. Additionally, the infection rates of respiratory syncytial virus (RSV), MP, and coronavirus (CoV) in 2023 either exceeded or were comparable to those in 2021 and 2022. Conversely, the positivity rates of PIV, RVs, metapneumovirus (MPV), and influenza B virus (FluB) were lower in 2023 compared to 2021 or 2022.

Importance: The implementation of strict non-pharmaceutical interventions (NPIs) during the coronavirus disease 2019 (COVID-19) pandemic may lead to changes in the epidemiological features of respiratory pathogens, as well as the occurrence of immune debt, potentially causing a resurgence in respiratory pathogen activity following the easing of strict NPIs measures. There are limited reports on the epidemiological characteristics of respiratory pathogens among patients of all ages with acute respiratory infections (ARIs) during the COVID-19 pandemic and after the easing of COVID-19 restrictions. Our study investigated the epidemiology of 13 respiratory pathogens in Shijiazhuang, China, from January 2021 to December 2023. Thisese data isare crucial for the ongoing surveillance of epidemiological shifts in respiratory pathogens during and post the -COVID-19 pandemic, and serves as a scientific foundation for the prevention and management of ARIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537120PMC
http://dx.doi.org/10.1128/spectrum.01161-24DOI Listing

Publication Analysis

Top Keywords

respiratory pathogens
36
covid-19 pandemic
20
acute respiratory
16
respiratory
14
pathogens
12
pathogens patients
12
respiratory infections
12
easing covid-19
12
covid-19 restrictions
12
2021 2022
12

Similar Publications

Exploration of the feasibility of clinical application of phage treatment for multidrug-resistant -induced pulmonary infection.

Emerg Microbes Infect

January 2025

Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China.

() commonly induces refractory infection due to its multidrug-resistant nature. To date, there have been no reports on the application of phage treatment for infection. This study was conducted to explore the feasibility of phage application in treating refractory infection by collaborating with a 59-year-old male patient with a pulmonary infection of multidrug-resistant Our experiments included three domains: ) selection of the appropriate phage, ) verification of the efficacy and safety of the selected phage, ) confirmation of phage-bacteria interactions.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.

View Article and Find Full Text PDF

Background: Autosomal recessive cutis laxa type 1B (ARCL1B) is an extremely rare disease characterized by severe systemic connective tissue abnormalities, including cutis laxa, aneurysm and fragility of blood vessels, birth fractures and emphysema. The severity of this disease ranges from perinatal death to manifestations compatible with survival. To date, no cases have been reported in the Chinese population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!